Menden-Deuer
Susanne
Menden-Deuer
Susanne
No Thumbnail Available
Search Results
Now showing
1 - 19 of 19
-
DatasetGrowth rates and equivalent spherical diameters of Heterosigma akashiwo after temperature transition(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2020-01-09) Menden-Deuer, SusanneQuantifying phytoplankton growth as a function of environmental conditions such as temperature is critical for understanding and predicting production in the ocean. Typically, thermal response is described as the steady state growth rates under static conditions. However, here, with a clonal culture of Heterosigma akashiwo, temperature was manipulated in the laboratory with the goal of describing how growth rates may change over time through the acclimation process. Growth rates and equivalent spherical diameter of Heterosigma akashiwo after temperature transition are reported. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/783500
-
DatasetEquivalent spherical diameter of Heterosigma akashiwo grown at different temperatures(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2020-01-09) Menden-Deuer, SusanneA key component of the effects of temperature on growth and production of phytoplankton is not only through changes in numerical abundance, but also biomass and proxies for biomass such as biovolume. To understand how temperature affected size and biovolumetric growth, repeated measurements of the mean size feature, equivalent spherical diameter (ESD), were recorded for each experimental replicate culture of Heterosigma akashiwo across a broad range of temperature treatments. These data were collected as part of the experiment designed to study the effect of changing temperature on phytoplankton growth rates. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/783509
-
DatasetChanges in biovolume in three herbivorous protists measured across a temperature gradient ranging from 0 to 22 degrees Celsius for 30 days(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-08-24) Franzè, Gayantonia ; Menden-Deuer, SusanneThis dataset reports changes in biovolume in three herbivorous protists measured across a temperature gradient ranging from 0 to 22 degrees Celsius for 30 days. The data provided served for the production of Figure 5 of Franzè and Menden-Deuer, 2020 (doi: 10.3354/meps13200). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/857328
-
DatasetEnvironmental and biological conditions from R/V Porsild characterizing Disko Bay, Greenland in April-May 2011(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-08-04) Menden-Deuer, SusanneEnvironmental and biological conditions from R/V Porsild characterizing Disko Bay, Greenland in April-May 2011. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/739708
-
DatasetMicroscopy cell counts from multivariate mesocosm experiments conducted with a natural phytoplankton community from Narragansett Bay, RI(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-04-28) Anderson, Stephanie I. ; Franze, Gayantonia ; Kling, Joshua D. ; Wilburn, Paul ; Kremer, Colin T. ; Menden-Deuer, Susanne ; Litchman, Elena ; Hutchins, David A. ; Rynearson, Tatiana A.This dataset represents microscopy cell counts from multivariate mesocosm experiments conducted with a natural phytoplankton community from Narragansett Bay, RI. These data were assessed in Anderson et al. The Interactive Effects of Temperature and Nutrients on a Spring Phytoplankton Community (in prep). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/848977
-
DatasetEffect of microplastic ingestion on heterotrophic dinoflagellate ingestion rates(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-08-02) Fulfer, Victoria ; Menden-Deuer, SusanneData were collected examining the effect of microplastic ingestion on heterotrophic dinoflagellate ingestion rates. Heterotrophic dinoflagellate species O. marina and Gyrodinium sp. were incubated for 5 days under two conditions: a control, fed only algal prey I. galbana, and a treatment fed algal prey and microplastic particles. Samples were taken every 24 hours, with abundances of dinoflagellates, algal prey, and microplastics measured with a Beckman Coulter Counter and verified via microscopy. Ingestion rates were measured and compared between treatments. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/855573
-
DatasetEffect of microplastic ingestion on heterotrophic dinoflagellate growth rates(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-08-02) Fulfer, Victoria ; Menden-Deuer, SusanneData were collected examining the effect of microplastic ingestion on heterotrophic dinoflagellate growth rates. Heterotrophic dinoflagellate species O. marina and Gyrodinium sp. were incubated for 5 days under two conditions: a control, fed only algal prey I. galbana, and a treatment fed algal prey and microplastic particles. Samples were taken every 24 hours, with abundances of dinoflagellates, algal prey, and microplastics measured with a Beckman Coulter Counter and verified via microscopy. Ingestion rates were measured and compared between treatments. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/855583
-
DatasetBiomass contribution of dominant phytoplankton and herbivorous protists taxa from R/V Porsild in Disko Bay, West Greenland from 2011-04-23 to 2011-05-07(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-05-20) Menden-Deuer, SusanneBiomass contribution of dominant phytoplankton and herbivorous protists taxa from R/V Porsild in Disko Bay, West Greenland from 2011-04-23 to 2011-05-07. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/739750
-
DatasetGrowth rates of dominant plankton across 3 temperature treatments from R/V Porsild in Disko Bay, Greenland from April to May 2011(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-05-20) Menden-Deuer, SusanneFor a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/739806
-
DatasetElemental composition of phytoplankton communities from multivariate mesocosm experiments conducted with a natural phytoplankton community from Narragansett Bay, RI.(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-04-28) Anderson, Stephanie I. ; Franze, Gayantonia ; Kling, Joshua D. ; Wilburn, Paul ; Kremer, Colin T. ; Menden-Deuer, Susanne ; Litchman, Elena ; Hutchins, David A. ; Rynearson, Tatiana A.This dataset reports the elemental composition of phytoplankton communities from multivariate mesocosm experiments conducted with a natural phytoplankton community from Narragansett Bay, RI. These data were assessed in Anderson et al. The Interactive Effects of Temperature and Nutrients on a Spring Phytoplankton Community (in prep). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/848587
-
DatasetEffect of microplastic ingestion on heterotrophic dinoflagellate functional responses(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-08-02) Fulfer, Victoria ; Menden-Deuer, SusanneData were collected examining the effect of microplastic ingestion on heterotrophic dinoflagellate functional responses. Heterotrophic dinoflagellate species O. marina and Gyrodinium sp. were incubated for 5 days under two conditions: a control, fed only algal prey I. galbana, and a treatment fed algal prey and microplastic particles. Samples were taken every 24 hours, with abundances of dinoflagellates, algal prey, and microplastics measured with a Beckman Coulter Counter and verified via microscopy. Ingestion rates were measured and compared between treatments. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/855595
-
ArticleThe Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP) : illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing(Public Library of Science, 2014-06-24) Keeling, Patrick J. ; Burki, Fabien ; Wilcox, Heather M. ; Allam, Bassem ; Allen, Eric E. ; Amaral-Zettler, Linda A. ; Armbrust, E. Virginia ; Archibald, John M. ; Bharti, Arvind K. ; Bell, Callum J. ; Beszteri, Bank ; Bidle, Kay D. ; Cameron, Connor T. ; Campbell, Lisa ; Caron, David A. ; Cattolico, Rose Ann ; Collier, Jackie L. ; Coyne, Kathryn J. ; Davy, Simon K. ; Deschamps, Phillipe ; Dyhrman, Sonya T. ; Edvardsen, Bente ; Gates, Ruth D. ; Gobler, Christopher J. ; Greenwood, Spencer J. ; Guida, Stephanie M. ; Jacobi, Jennifer L. ; Jakobsen, Kjetill S. ; James, Erick R. ; Jenkins, Bethany D. ; John, Uwe ; Johnson, Matthew D. ; Juhl, Andrew R. ; Kamp, Anja ; Katz, Laura A. ; Kiene, Ronald P. ; Kudryavtsev, Alexander N. ; Leander, Brian S. ; Lin, Senjie ; Lovejoy, Connie ; Lynn, Denis ; Marchetti, Adrian ; McManus, George ; Nedelcu, Aurora M. ; Menden-Deuer, Susanne ; Miceli, Cristina ; Mock, Thomas ; Montresor, Marina ; Moran, Mary Ann ; Murray, Shauna A. ; Nadathur, Govind ; Nagai, Satoshi ; Ngam, Peter B. ; Palenik, Brian ; Pawlowski, Jan ; Petroni, Giulio ; Piganeau, Gwenael ; Posewitz, Matthew C. ; Rengefors, Karin ; Romano, Giovanna ; Rumpho, Mary E. ; Rynearson, Tatiana A. ; Schilling, Kelly B. ; Schroeder, Declan C. ; Simpson, Alastair G. B. ; Slamovits, Claudio H. ; Smith, David R. ; Smith, G. Jason ; Smith, Sarah R. ; Sosik, Heidi M. ; Stief, Peter ; Theriot, Edward ; Twary, Scott N. ; Umale, Pooja E. ; Vaulot, Daniel ; Wawrik, Boris ; Wheeler, Glen L. ; Wilson, William H. ; Xu, Yan ; Zingone, Adriana ; Worden, Alexandra Z.Microbial ecology is plagued by problems of an abstract nature. Cell sizes are so small and population sizes so large that both are virtually incomprehensible. Niches are so far from our everyday experience as to make their very definition elusive. Organisms that may be abundant and critical to our survival are little understood, seldom described and/or cultured, and sometimes yet to be even seen. One way to confront these problems is to use data of an even more abstract nature: molecular sequence data. Massive environmental nucleic acid sequencing, such as metagenomics or metatranscriptomics, promises functional analysis of microbial communities as a whole, without prior knowledge of which organisms are in the environment or exactly how they are interacting. But sequence-based ecological studies nearly always use a comparative approach, and that requires relevant reference sequences, which are an extremely limited resource when it comes to microbial eukaryotes. In practice, this means sequence databases need to be populated with enormous quantities of data for which we have some certainties about the source. Most important is the taxonomic identity of the organism from which a sequence is derived and as much functional identification of the encoded proteins as possible. In an ideal world, such information would be available as a large set of complete, well-curated, and annotated genomes for all the major organisms from the environment in question. Reality substantially diverges from this ideal, but at least for bacterial molecular ecology, there is a database consisting of thousands of complete genomes from a wide range of taxa, supplemented by a phylogeny-driven approach to diversifying genomics. For eukaryotes, the number of available genomes is far, far fewer, and we have relied much more heavily on random growth of sequence databases, raising the question as to whether this is fit for purpose.
-
DatasetSize-fractionated chlorophyll a from multivariate mesocosm experiments conducted with a natural phytoplankton community from Narragansett Bay, RI(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-04-28) Anderson, Stephanie I. ; Franze, Gayantonia ; Kling, Joshua D. ; Wilburn, Paul ; Kremer, Colin T. ; Menden-Deuer, Susanne ; Litchman, Elena ; Hutchins, David A. ; Rynearson, Tatiana A.This dataset reports the size-fractionated chlorophyll a from multivariate mesocosm experiments conducted with a natural phytoplankton community from Narragansett Bay, RI. These data were assessed in Anderson et al. The Interactive Effects of Temperature and Nutrients on a Spring Phytoplankton Community (in prep). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/848948
-
DatasetAbundance- and biomass-based growth rates of three heterotrophic protists measured across a temperature gradient ranging from 0 to 22 degrees Celsius for 30 days(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-08-24) Franzè, Gayantonia ; Menden-Deuer, SusanneThis dataset includes abundance- and biomass-based growth rates of three heterotrophic protists measured across a temperature gradient ranging from 0 to 22 degrees Celsius for 30 days. The data provided served for the production of Figures 2, 3, and 4 of Franzè and Menden-Deuer, 2020 (doi: 10.3354/meps13200). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/857267
-
DatasetComparison of abundance-based growth rate predicted following Q10 model, Eppley’s equation, and the linear model obtained in Franzè and Menden-Deuer, 2020(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-08-24) Franzè, Gayantonia ; Menden-Deuer, SusanneThis dataset contains a comparison of abundance-based growth rate predicted following Q10 model, Eppley’s equation, and the linear model obtained in Franzè and Menden-Deuer, 2020 (doi: 10.3354/meps13200). The data provided served for the production of Figure 6 of Franzè and Menden-Deuer, 2020. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/857356
-
ArticleEvaluation of new and net community production estimates by multiple ship-based and autonomous observations in the Northeast Pacific Ocean(University of California Press, 2023-06-16) Niebergall, Alexandria K. ; Traylor, Shawnee ; Huang, Yibin ; Feen, Melanie ; Meyer, Meredith G. ; McNair, Heather M. ; Nicholson, David P. ; Fassbender, Andrea J. ; Omand, Melissa M. ; Marchetti, Adrian ; Menden-Deuer, Susanne ; Tang, Weiyi ; Gong, Weida ; Tortell, Philippe D. ; Hamme, Roberta C. ; Cassar, NicolasNew production (NP) and net community production (NCP) measurements are often used as estimates of carbon export potential from the mixed layer of the ocean, an important process in the regulation of global climate. Diverse methods can be used to measure NP and NCP, from research vessels, autonomous platforms, and remote sensing, each with its own set of benefits and uncertainties. The various methods are rarely applied simultaneously in a single location, limiting our ability for direct comparisons of the resulting measurements. In this study, we evaluated NP and NCP from thirteen independent datasets collected via in situ, in vitro, and satellite-based methods near Ocean Station Papa during the 2018 Northeast Pacific field campaign of the NASA project EXport Processes in the Ocean from RemoTe Sensing (EXPORTS). Altogether, the datasets indicate that carbon export potential was relatively low (median daily averages between −5.1 and 12.6 mmol C m−2 d−1), with most measurements indicating slight net autotrophy in the region. This result is consistent with NCP estimates based on satellite measurements of sea surface temperature and chlorophyll a. We explored possible causes of discrepancies among methods, including differences in assumptions about stoichiometry, vertical integration, total volume sampled, and the spatiotemporal extent considered. Results of a generalized additive mixed model indicate that the spatial variation across platforms can explain much of the difference among methods. Once spatial variation and temporal autocorrelation are considered, a variety of methods can provide consistent estimates of NP and NCP, leveraging the strengths of each approach.
-
Working PaperEXPORTS Measurements and Protocols for the NE Pacific Campaign(NASA STI Program and Woods Hole Oceanographic Institution, 2021-02) Behrenfeld, Michael J. ; Benitez-Nelson, Claudia R. ; Boss, Emmanuel S. ; Brzezinski, Mark A. ; Buck, Kristen N. ; Buesseler, Ken O. ; Burd, Adrian B. ; Carlson, Craig A. ; Cassar, Nicolas ; Cetinić, Ivona ; Close, Hilary G. ; Craig, Susanne E. ; D'Asaro, Eric A. ; Durkin, Colleen A. ; Estapa, Margaret L. ; Fassbender, Andrea ; Fox, James ; Freeman, Scott ; Gifford, Scott M. ; Gong, Weida ; Graff, Jason R. ; Gray, Deric ; Guidi, Lionel ; Halsey, Kim ; Hansell, Dennis A. ; Haëntjens, Nils ; Horner, Tristan J. ; Jenkins, Bethany D. ; Jones, Janice L. ; Karp-Boss, Lee ; Kramer, Sasha J. ; Lam, Phoebe J. ; Lee, Craig M. ; Lee, Jong-Mi ; Liu, Shuting ; Mannino, Antonio ; Maas, Amy E. ; Marchal, Olivier ; Marchetti, Adrian ; McDonnell, Andrew M. P. ; McNair, Heather ; Menden-Deuer, Susanne ; Morison, Francoise ; Nelson, Norman B. ; Nicholson, David P. ; Niebergall, Alexandria K. ; Omand, Melissa M. ; Passow, Uta ; Perry, Mary J. ; Popp, Brian N. ; Proctor, Chris ; Rafter, Patrick ; Roca-Martí, Montserrat ; Roesler, Collin S. ; Rubin, Edwina ; Rynearson, Tatiana A. ; Santoro, Alyson E. ; Siegel, David A. ; Sosik, Heidi M. ; Soto Ramos, Inia ; Stamieszkin, Karen ; Steinberg, Deborah K. ; Stephens, Brandon M. ; Thompson, Andrew F. ; Van Mooy, Benjamin A. S. ; Zhang, XiaodongEXport Processes in the Ocean from Remote Sensing (EXPORTS) is a large-scale NASA-led and NSF co-funded field campaign that will provide critical information for quantifying the export and fate of upper ocean net primary production (NPP) using satellite information and state of the art technology.
-
ArticleAn operational overview of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) Northeast Pacific field deployment(University of California Press, 2021-07-07) Siegel, David A. ; Cetinić, Ivona ; Graff, Jason R. ; Lee, Craig M. ; Nelson, Norman B. ; Perry, Mary J. ; Soto Ramos, Inia ; Steinberg, Deborah K. ; Buesseler, Ken O. ; Hamme, Roberta C. ; Fassbender, Andrea ; Nicholson, David P. ; Omand, Melissa M. ; Robert, Marie ; Thompson, Andrew F. ; Amaral, Vinicius ; Behrenfeld, Michael J. ; Benitez-Nelson, Claudia R. ; Bisson, Kelsey ; Boss, Emmanuel S. ; Boyd, Philip ; Brzezinski, Mark A. ; Buck, Kristen N. ; Burd, Adrian B. ; Burns, Shannon ; Caprara, Salvatore ; Carlson, Craig A. ; Cassar, Nicolas ; Close, Hilary G. ; D'Asaro, Eric A. ; Durkin, Colleen A. ; Erickson, Zachary K. ; Estapa, Margaret L. ; Fields, Erik ; Fox, James ; Freeman, Scott ; Gifford, Scott M. ; Gong, Weida ; Gray, Deric ; Guidi, Lionel ; Haëntjens, Nils ; Halsey, Kim ; Huot, Yannick ; Hansell, Dennis A. ; Jenkins, Bethany D. ; Karp-Boss, Lee ; Kramer, Sasha J. ; Lam, Phoebe J. ; Lee, Jong-Mi ; Maas, Amy E. ; Marchal, Olivier ; Marchetti, Adrian ; McDonnell, Andrew M. P. ; McNair, Heather ; Menden-Deuer, Susanne ; Morison, Francoise ; Niebergall, Alexandria K. ; Passow, Uta ; Popp, Brian N. ; Potvin, Geneviève ; Resplandy, Laure ; Roca-Martí, Montserrat ; Roesler, Collin S. ; Rynearson, Tatiana A. ; Traylor, Shawnee ; Santoro, Alyson E. ; Seraphin, Kanesa ; Sosik, Heidi M. ; Stamieszkin, Karen ; Stephens, Brandon M. ; Tang, Weiyi ; Van Mooy, Benjamin ; Xiong, Yuanheng ; Zhang, XiaodongThe goal of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign is to develop a predictive understanding of the export, fate, and carbon cycle impacts of global ocean net primary production. To accomplish this goal, observations of export flux pathways, plankton community composition, food web processes, and optical, physical, and biogeochemical (BGC) properties are needed over a range of ecosystem states. Here we introduce the first EXPORTS field deployment to Ocean Station Papa in the Northeast Pacific Ocean during summer of 2018, providing context for other papers in this special collection. The experiment was conducted with two ships: a Process Ship, focused on ecological rates, BGC fluxes, temporal changes in food web, and BGC and optical properties, that followed an instrumented Lagrangian float; and a Survey Ship that sampled BGC and optical properties in spatial patterns around the Process Ship. An array of autonomous underwater assets provided measurements over a range of spatial and temporal scales, and partnering programs and remote sensing observations provided additional observational context. The oceanographic setting was typical of late-summer conditions at Ocean Station Papa: a shallow mixed layer, strong vertical and weak horizontal gradients in hydrographic properties, sluggish sub-inertial currents, elevated macronutrient concentrations and low phytoplankton abundances. Although nutrient concentrations were consistent with previous observations, mixed layer chlorophyll was lower than typically observed, resulting in a deeper euphotic zone. Analyses of surface layer temperature and salinity found three distinct surface water types, allowing for diagnosis of whether observed changes were spatial or temporal. The 2018 EXPORTS field deployment is among the most comprehensive biological pump studies ever conducted. A second deployment to the North Atlantic Ocean occurred in spring 2021, which will be followed by focused work on data synthesis and modeling using the entire EXPORTS data set.
-
ArticleUnusual Hemiaulus bloom influences ocean productivity in Northeastern US Shelf waters(European Geosciences Union, 2024-03-13) Cieza, S. Alejandra Castillo ; Stanley, Rachel H. R. ; Marrec, Pierre ; Fontaine, Diana N. ; Crockford, E. Taylor ; McGillicuddy Jr., Dennis J. ; Mehta, Arshia ; Menden-Deuer, Susanne ; Peacock, Emily E. ; Rynearson, Tatiana A. ; Sandwith, Zoe O. ; Zhang, Weifeng Gordon ; Sosik, Heidi M.Because of its temperate location, high dynamic range of environmental conditions, and extensive human activity, the long-term ecological research site in the coastal Northeastern US Shelf (NES) of the northwestern Atlantic Ocean offers an ideal opportunity to understand how productivity shifts in response to changes in planktonic community composition. Ocean production and trophic transfer rates, including net community production (NCP), net primary production (NPP), gross oxygen production (GOP), and microzooplankton grazing rates, are key metrics for understanding marine ecosystem dynamics and associated impacts on biogeochemical cycles. Although small phytoplankton usually dominate phytoplankton community composition and Chl a concentration in the NES waters during the summer, in August 2019, a bloom of the large diatom genus Hemiaulus, with N2-fixing symbionts, was observed in the mid-shelf region. NCP was 2.5 to 9 times higher when Hemiaulus dominated phytoplankton carbon compared to NCP throughout the same geographic area during the summers of 2020–2022. The Hemiaulus bloom in summer 2019 also coincided with higher trophic transfer efficiency from phytoplankton to microzooplankton and higher GOP and NPP than in the summers 2020–2022. This study suggests that the dominance of an atypical phytoplankton community that alters the typical size distribution of primary producers can significantly influence productivity and trophic transfer, highlighting the dynamic nature of the coastal ocean. Notably, summer 2018 NCP levels were also high, although the size distribution of Chl a was typical and an atypical phytoplankton community was not observed. A better understanding of the dynamics of the NES in terms of biological productivity is of primary importance, especially in the context of changing environmental conditions due to climate processes.