Fratantoni David M.

No Thumbnail Available
Last Name
First Name
David M.

Search Results

Now showing 1 - 3 of 3
  • Technical Report
    CLIVAR Mode Water Dynamics Experiment (CLIMODE) fall 2005, R/V Oceanus voyage 419, November 9, 2005–November 27, 2005
    (Woods Hole Oceanographic Institution, 2006-02) Hutto, Lara ; Weller, Robert A. ; Fratantoni, David M. ; Lord, Jeffrey ; Kemp, John N. ; Lund, John M. ; Brambilla, Elena ; Bigorre, Sebastien P.
    CLIMODE (CLIVAR Mode Water Dynamic Experiment) is a program designed to understand and quantify the processes responsible for the formation and dissipation of North Atlantic subtropical mode water, also called Eighteen Degree Water (EDW). Among these processes, the amount of buoyancy loss at the ocean-atmosphere interface is still uncertain and needs to be accurately quantified. In November 2005, a cruise was made aboard R/V Oceanus in the region of the separated Gulf Stream, where intense oceanic heat loss to the atmosphere is believed to trigger the formation of EDW. During that cruise, one surface mooring with IMET meteorological instruments was anchored in the core of the Gulf Stream as well as two moored profilers on its southeastern edge. Surface drifters, APEX floats and bobby RAFOS floats were also deployed along with two other moorings with sound sources. CTD profiles and water samples were also carried out. This array of instruments will permit a characterization of EDW with high spatial and temporal resolutions, and accurate in-situ measurements of air-sea fluxes in the formation region. The present report documents this cruise, the instruments that were deployed and the array of measurements that was set in place.
  • Technical Report
    CLIMODE bobber data report : July 2005 - May 2009
    (Woods Hole Oceanographic Institution, 2010-03) Fratantoni, David M. ; McKee, Theresa K. ; Hodges, Benjamin A. ; Furey, Heather H. ; Lund, John M.
    This report summarizes direct observations of Eighteen Degree Water (EDW) subduction and dispersal within the subtropical gyre of the North Atlantic Ocean. Forty acoustically-tracked bobbing, profiling floats (“bobbers”) were deployed to study the formation and dispersal of EDW in the western North Atlantic. The unique bobber dataset described herein provides insight into the evolution of EDW by means of direct, eddy-resolving measurement of EDW Lagrangian dispersal pathways and stratification. Bobbers are modified Autonomous Profiling Explorer (APEX) profiling floats which actively servo their buoyancy control mechanism to follow a particular isothermal surface. The CLIVAR Mode Water Dynamics Experiment (CLIMODE) bobbers tracked the 18.5°C temperature surface for 3 days, then bobbed quickly between the 17°C and 19°C isotherms. This cycle was repeated for one month, after which each bobber profiled to 1000 m before ascending to the surface to transmit data. The resulting dataset (37/40 tracked bobbers; more than half still profiling as of January 2010) yields well-resolved trajectories, unprecedented velocity statistics in the core of the subducting and spreading EDW, and detailed information about the Lagrangian evolution of EDW thickness and vertical structure. This report provides an overview of the experimental procedure employed and summarizes the initial processing of the bobber dataset.
  • Technical Report
    CLIMODE Subsurface Mooring Report : November 2005 - November 2007
    (Woods Hole Oceanographic Institution, 2013-03) Lund, John M. ; Davis, Xujing Jia ; Ramsey, Andree L. ; Straneo, Fiamma ; Torres, Daniel J. ; Palter, Jaime B. ; Gary, Stefan F. ; Fratantoni, David M.
    Two years of temperature, salinity, current, and nutrient data were collected on four subsurface moorings as part of the 2 year field component of the CLIMODE experiment. The moorings were located in North Atlantic’s subtropical gyre, south-east of the Gulf Stream. Two moorings, the most heavily instrumented, were close to the Gulf Stream, in the region where cold air outbreaks force large air-sea fluxes and where Eighteen Degree Water outcrops. Two other moorings were located farther south and carried more limited instrumentation. The moorings were initially deployed in November of 2005, turned around in November of 2006 and finally recovered in November of 2007. During the first year, the moorings close to the Gulf Stream suffered considerable blow down, and some of the instruments failed. During the second year, the blow down was greatly reduced and most instruments collected a full year worth of data.