Oliveira Tiago C. A.

No Thumbnail Available
Last Name
Oliveira
First Name
Tiago C. A.
ORCID
0000-0001-7040-7189

Search Results

Now showing 1 - 2 of 2
  • Article
    Pressure field induced in the water column by acoustic-gravity waves generated from sea bottom motion
    (John Wiley & Sons, 2016-10-24) Oliveira, Tiago C. A. ; Kadri, Usama
    An uplift of the ocean bottom caused by a submarine earthquake can trigger acoustic-gravity waves that travel at near the speed of sound in water and thus may act as early tsunami precursors. We study the spatiotemporal evolution of the pressure field induced by acoustic-gravity modes during submarine earthquakes, analytically. We show that these modes may all induce comparable temporal variations in pressure at different water depths in regions far from the epicenter, though the pressure field depends on the presence of a leading acoustic-gravity wave mode. Practically, this can assist in the implementation of an early tsunami detection system by identifying the pressure and frequency ranges of measurement equipment and appropriate installation locations.
  • Article
    Megameter propagation and correlation of T-waves from Kermadec Trench and Islands
    (Frontiers Media, 2022-11-15) Oliveira, Tiago C. A. ; Nielsen, Peter ; Lin, Ying-Tsong ; Kushida, Noriyuki ; Jesus, Sérgio M.
    On 18 June 2020 and 4 March 2021, very energetic low-frequency underwater T-wave signals (2 to 25 Hz) were recorded at the Comprehensive Nuclear-Test-Ban Treaty (CTBT) International Monitoring System (IMS) hydrophone stations in the Pacific Ocean (Stations HA11 and HA03) and the South Atlantic Ocean (Station HA10). This work investigates the long-range (megameters) propagation of these T-waves. Their sources were three powerful submarine earthquakes in the Kermadec Trench and Islands, located at approximately 6000, 8800, and 15100 km from Stations HA11, HA03, and HA10, respectively. Arrival time and back azimuth of the recorded T-waves were estimated using the Progressive Multi-Channel Correlation algorithm installed on the CTBT Organization (CTBTO) virtual Data Exploitation Centre (vDEC). Different arrivals within the duration of the earthquake signals were identified, and their correlations were also analyzed. The data analysis at HA03 and HA10 revealed intriguing T-wave propagation paths reflecting, refracting, or even transmitting through continents, as well as T-wave excitation along a chain of seamounts. The analysis also showed much higher transmission loss (TL) in the propagation paths to HA11 than to HA03 and HA10. Moreover, strong discrepancies between expected and measured back azimuths were observed for HA11, and a three-dimensional (3D) parabolic equation model was utilized to identify the cause of these differences. Numerical results revealed the importance of 3D effects induced by the Kermadec Ridge, Fiji archipelago, and Marshall Islands on T-wave propagation to HA11. This analysis can guide future improvements in underwater event localization using the CTBT-IMS hydroacoustic sensor network.