Baumann Zofia

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 2 of 2
  • Article
    Fukushima-derived radionuclides in the ocean and biota off Japan
    (National Academy of Sciences, 2012-04-02) Buesseler, Ken O. ; Jayne, Steven R. ; Fisher, Nicholas S. ; Rypina, Irina I. ; Baumann, Hannes ; Baumann, Zofia ; Breier, Crystaline F. ; Douglass, Elizabeth M. ; George, Jennifer ; Macdonald, Alison M. ; Miyamoto, Hiroomi ; Nishikawa, Jun ; Pike, Steven M. ; Yoshida, Sachiko
  • Preprint
    Fukushima 137Cs at the base of planktonic food webs off Japan
    ( 2015-09-18) Baumann, Zofia ; Fisher, Nicholas S. ; Gobler, Christopher J. ; Buesseler, Ken O. ; George, J. A. ; Breier, Crystaline F. ; Nishikawa, Jun
    The potential bioaccumulation of 137Cs in marine food webs off Japan became a concern following the release of radioactive contaminants from the damaged Fukushima nuclear power plant into the coastal ocean. Previous studies suggest that 137Cs activities increase with trophic level in pelagic food webs, however, the bioaccumulation of 137Cs from seawater to primary producers, to zooplankton has not been evaluated in the field. Since phytoplankton are frequently the largest component of SPM (suspended particulate matter) we used SPM concentrations and particle-associated 137Cs to understand bioaccumulation of 137Cs in through trophic pathways in the field. We determined particle-associated 137Cs for samples collected at 20 m depth from six stations off Japan three months after the initial release from the Fukushima nuclear power plant. At 20 m SPM ranged from 0.65 to 1.60 mg L-1 and rapidly declined with depth. The ratios of particulate organic carbon to chlorophyll a suggested that phytoplankton comprised much of the SPM in these samples. 137Cs activities on particles accounted for on average 0.04% of the total 137Cs in seawater samples, and measured concentration factors of 137Cs on small suspended particles were comparatively low (~102). However, when 137Cs in crustacean zooplankton was derived based only on modeling dietary 137Cs uptake, we found predicted and measured 137Cs concentrations in good agreement. We therefore postulate the possibility that the dietary route of 137Cs bioaccumulation (i.e., phytoplankton ingestion) could be largely responsible for the measured levels in the copepod-dominated (%) zooplankton assemblages in Japanese coastal waters. Finally, our data did not support the notion that zooplankton grazing on phytoplankton results in a biomagnification of 137Cs.