Landry Scott

No Thumbnail Available
Last Name
Landry
First Name
Scott
ORCID

Search Results

Now showing 1 - 2 of 2
  • Presentation
    Don’t assume it’s ghost gear : accurate gear characterization is critical for entanglement mitigation [poster]
    (Woods Hole Oceanographic Institution, 2017-10-25) Henry, Allison G. ; Barco, Susan G. ; Cole, Tim ; Johnson, Amanda ; Knowlton, Amy R. ; Landry, Scott ; Mattila, David K. ; Moore, Michael J. ; Robbins, Jooke ; van der Hoop, Julie ; Asmutis-Silvia, Regina
    Entanglement is a significant conservation and welfare issue which is limiting the recovery of a number of marine species, including marine mammals. It is therefore important to reliably identify the causes of these events, including the nature of the entangling gear in order to reduce or prevent them in the future. A recently published review of marine debris assessed 76 publications and attributed a total of 1805 cases of cetacean entanglements in “ghost gear”, of which 78% (n=1413) were extracted from 13 peer reviewed publications. We examined the 13 publications cited in the review and found that the specific gear type or status of gear involved in the reported events was rarely mentioned beyond the fact that it was fishing related. This is likely due to the fact that determinations of debris as the entangling material are very difficult. In fact, in reviewing 10 years of large whale entanglement records for the U.S., the authors of another study reported that Hawaii was the only region in which any entangling gear was positively identified as ghost gear. The assumption that entangling gear is marine debris unless otherwise stated is dangerous because it could impact efforts to modify or restrict risk-prone fishing in key marine mammal habitats. Entanglement in actively fished gear poses a very real threat, and claims that only lost or abandoned fishing gear is responsible for entanglements can undermine conservation efforts.
  • Presentation
    Entanglements of North Atlantic right whales increase as their distribution shifts in response to climate change: The need for a new management paradigm [poster]
    (Woods Hole Oceanographic Institution, 2019-12-09) Pendleton, Daniel ; Pettis, Heather M. ; Hamilton, Philip K. ; Knowlton, Amy R. ; Landry, Scott ; Moore, Michael J. ; McLellan, William A. ; Corkeron, Peter ; Kraus, Scott D.
    Detection rate of severely injured or entangled NARWs began to increase around 2004 - 2007.