Landry Scott

No Thumbnail Available
Last Name
Landry
First Name
Scott
ORCID

Search Results

Now showing 1 - 3 of 3
  • Presentation
    Don’t assume it’s ghost gear : accurate gear characterization is critical for entanglement mitigation [poster]
    (Woods Hole Oceanographic Institution, 2017-10-25) Henry, Allison G. ; Barco, Susan G. ; Cole, Tim ; Johnson, Amanda ; Knowlton, Amy R. ; Landry, Scott ; Mattila, David K. ; Moore, Michael J. ; Robbins, Jooke ; van der Hoop, Julie ; Asmutis-Silvia, Regina
    Entanglement is a significant conservation and welfare issue which is limiting the recovery of a number of marine species, including marine mammals. It is therefore important to reliably identify the causes of these events, including the nature of the entangling gear in order to reduce or prevent them in the future. A recently published review of marine debris assessed 76 publications and attributed a total of 1805 cases of cetacean entanglements in “ghost gear”, of which 78% (n=1413) were extracted from 13 peer reviewed publications. We examined the 13 publications cited in the review and found that the specific gear type or status of gear involved in the reported events was rarely mentioned beyond the fact that it was fishing related. This is likely due to the fact that determinations of debris as the entangling material are very difficult. In fact, in reviewing 10 years of large whale entanglement records for the U.S., the authors of another study reported that Hawaii was the only region in which any entangling gear was positively identified as ghost gear. The assumption that entangling gear is marine debris unless otherwise stated is dangerous because it could impact efforts to modify or restrict risk-prone fishing in key marine mammal habitats. Entanglement in actively fished gear poses a very real threat, and claims that only lost or abandoned fishing gear is responsible for entanglements can undermine conservation efforts.
  • Article
    Sedation at sea of entangled North Atlantic right whales (Eubalaena glacialis) to enhance disentanglement
    (Public Library of Science, 2010-03-09) Moore, Michael J. ; Walsh, Michael ; Bailey, James ; Brunson, David ; Gulland, Frances M. ; Landry, Scott ; Mattila, David K. ; Mayo, Charles A. ; Slay, Christopher K. ; Smith, Jamison ; Rowles, Teresa K.
    The objective of this study was to enhance removal of fishing gear from right whales (Eubalaena glacialis) at sea that evade disentanglement boat approaches. Titrated intra muscular injections to achieve sedation were undertaken on two free swimming right whales. Following initial trials with beached whales, a sedation protocol was developed for right whales. Mass was estimated from sighting and necropsy data from comparable right whales. Midazolam (0.01 to 0.025 mg/kg) was first given alone or with meperidine (0.17 to 0.25 mg/kg) either once or four times over two hours to whale #1102 by cantilevered pole syringe. In the last attempt on whale #1102 there appeared to be a mild effect in 20–30 minutes, with duration of less than 2 hours that included exhalation before the blowhole fully cleared the water. Boat avoidance, used as a measure of sedation depth, was not reduced. A second severely entangled animal in 2009, whale #3311, received midazolam (0.03 mg/kg) followed by butorphanol (0.03 mg/kg) an hour later, delivered ballistically. Two months later it was then given midazolam (0.07 mg/kg) and butorphanol (0.07 mg/kg) simultaneously. The next day both drugs at 0.1 mg/kg were given as a mixture in two darts 10 minutes apart. The first attempt on whale #3311 showed increased swimming speed and boat avoidance was observed after a further 20 minutes. The second attempt on whale #3311 showed respiration increasing mildly in frequency and decreasing in strength. The third attempt on whale #3311 gave a statistically significant increase in respiratory frequency an hour after injection, with increased swimming speed and marked reduction of boat evasion that enabled decisive cuts to entangling gear. We conclude that butorphanol and midazolam delivered ballistically in appropriate dosages and combinations may have merit in future refractory free swimming entangled right whale cases until other entanglement solutions are developed.
  • Preprint
    Rebuttal to published article “A review of ghost gear entanglement amongst marine mammals, reptiles and elasmobranchs” by M. Stelfox, J. Hudgins, and M. Sweet
    ( 2016-11) Asmutis-Silvia, Regina ; Barco, Susan G. ; Cole, Tim ; Henry, Allison G. ; Johnson, Amanda ; Knowlton, Amy R. ; Landry, Scott ; Mattila, David K. ; Moore, Michael J. ; Robbins, Jooke ; van der Hoop, Julie
    We reviewed the findings of the recently published article by Stelfox et al. (2016): “A review of ghost gear entanglement amongst marine mammals, reptiles and elasmobranchs” published in this journal (Volume 111, pp 6–17) and found that they are both flawed and misleading as they do not accurately reflect the prevalence of “ghost gear” cases reported in the literature. While we commend the authors for recognizing the importance of attempting to quantify the threat and for recommending more comprehensive databases, the methods, results and conclusions of this review have not advanced the understanding of the issue. As authors of the papers on whale entanglements in the North Atlantic that were reviewed by Stelfox et al. (2016) and others who are knowledgeable about the topic, we provide specific comments regarding misrepresentations of both the source of entanglement (e.g., actively fished gear versus “ghost gear”) and the number of reported entanglements for whale species included in the North Atlantic.