Prowe A. E. Friederike

No Thumbnail Available
Last Name
Prowe
First Name
A. E. Friederike
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Changes in the North Atlantic Oscillation influence CO2 uptake in the North Atlantic over the past 2 decades
    (American Geophysical Union, 2008-12-31) Thomas, Helmuth ; Prowe, A. E. Friederike ; Lima, Ivan D. ; Doney, Scott C. ; Wanninkhof, Rik ; Greatbatch, Richard J. ; Schuster, Ute ; Corbiere, Antoine
    Observational studies report a rapid decline of ocean CO2 uptake in the temperate North Atlantic during the last decade. We analyze these findings using ocean physical-biological numerical simulations forced with interannually varying atmospheric conditions for the period 1979–2004. In the simulations, surface ocean water mass properties and CO2 system variables exhibit substantial multiannual variability on sub-basin scales in response to wind-driven reorganization in ocean circulation and surface warming/cooling. The simulated temporal evolution of the ocean CO2 system is broadly consistent with reported observational trends and is influenced substantially by the phase of the North Atlantic Oscillation (NAO). Many of the observational estimates cover a period after 1995 of mostly negative or weakly positive NAO conditions, which are characterized in the simulations by reduced North Atlantic Current transport of subtropical waters into the eastern basin and by a decline in CO2 uptake. We suggest therefore that air-sea CO2 uptake may rebound in the eastern temperate North Atlantic during future periods of more positive NAO, similar to the patterns found in our model for the sustained positive NAO period in the early 1990s. Thus, our analysis indicates that the recent rapid shifts in CO2 flux reflect decadal perturbations superimposed on more gradual secular trends. The simulations highlight the need for long-term ocean carbon observations and modeling to fully resolve multiannual variability, which can obscure detection of the long-term changes associated with anthropogenic CO2 uptake and climate change.
  • Article
    Rapid decline of the CO2 buffering capacity in the North Sea and implications for the North Atlantic Ocean
    (American Geophysical Union, 2007-10-06) Thomas, Helmuth ; Prowe, A. E. Friederike ; van Heuven, Steven ; Bozec, Yann ; Baar, Hein J. W. de ; Schiettecatte, Laure-Sophie ; Suykens, Kim ; Kone, Mathieu ; Borges, Alberto V. ; Lima, Ivan D. ; Doney, Scott C.
    New observations from the North Sea, a NW European shelf sea, show that between 2001 and 2005 the CO2 partial pressure (pCO2) in surface waters rose by 22 μatm, thus faster than atmospheric pCO2, which in the same period rose approximately 11 μatm. The surprisingly rapid decline in air-sea partial pressure difference (ΔpCO2) is primarily a response to an elevated water column inventory of dissolved inorganic carbon (DIC), which, in turn, reflects mostly anthropogenic CO2 input rather than natural interannual variability. The resulting decline in the buffering capacity of the inorganic carbonate system (increasing Revelle factor) sets up a theoretically predicted feedback loop whereby the invasion of anthropogenic CO2 reduces the ocean's ability to uptake additional CO2. Model simulations for the North Atlantic Ocean and thermodynamic principles reveal that this feedback should be stronger, at present, in colder midlatitude and subpolar waters because of the lower present-day buffer capacity and elevated DIC levels driven either by northward advected surface water and/or excess local air-sea CO2 uptake. This buffer capacity feedback mechanism helps to explain at least part of the observed trend of decreasing air-sea ΔpCO2 over time as reported in several other recent North Atlantic studies.