Liu
Zhengyu
Liu
Zhengyu
No Thumbnail Available
9 results
Search Results
Now showing
1 - 9 of 9
-
PreprintAsynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation( 2017-08-21) Zhang, Jiaxu ; Liu, Zhengyu ; Brady, Esther C. ; Oppo, Delia W. ; Clark, Peter U. ; Jahn, Alexandra ; Marcott, Shaun A. ; Lindsay, KeithThe large-scale reorganization of deep-ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ18O of benthic foraminiferal calcite (δ18Oc). Here we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ18O evolution. Model results suggest that in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties due to freshwater input as suggested previously, the observed phasing difference of deep δ18Oc likely reflects early warming of the deep northern North Atlantic by ~1.4°C while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong mid-depth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way ocean circulation affects heat, a dynamic tracer, is considerably different than how it affects passive tracers like δ18O, and call for caution when inferring water mass changes from δ18Oc records while assuming uniform changes in deep temperatures.
-
ArticleRemineralization dominating the δ13 C decrease in the mid-depth Atlantic during the last deglaciation(Elsevier, 2021-07-20) Gu, Sifan ; Liu, Zhengyu ; Oppo, Delia W. ; Lynch-Stieglitz, Jean ; Jahn, Alexandra ; Zhang, Jiaxu ; Lindsay, Keith ; Wu, Lixinδ 13 C records from the mid-depth Atlantic show a pronounced decrease during the Heinrich Stadial 1 (HS1), a deglacial episode of dramatically weakened Atlantic Meridional Ocean Circulation (AMOC). Proposed explanations for this mid-depth decrease include a greater fraction of δ 13 C -depleted southern sourced water (SSW), a δ 13 C decrease in the North Atlantic Deep Water (NADW) end-member, and accumulation of the respired organic carbon. However, the relative importance of these proposed mechanisms cannot be quantitatively constrained from current available observations alone. Here we diagnose the individual contributions to the deglacial Atlantic mid-depth δ 13 C change from these mechanisms using a transient simulation with carbon isotopes and idealized tracers. We find that although the fraction of the low- δ 13 C SSW increases in response to a weaker AMOC during HS1, the water mass mixture change only plays a minor role in the mid-depth Atlantic δ 13 C decrease. Instead, increased remineralization due to the AMOC-induced mid-depth ocean ventilation decrease is the dominant cause. In this study, we differentiate between the deep end-members, which are assigned to deep water regions used in previous paleoceanography studies, and the surface end-members, which are from the near-surface water defined from the physical origin of deep water masses. We find that the deep NADW end-member includes additional remineralized material accumulated when sinking from the surface (surface NADW end-member). Therefore, the surface end-members should be used in diagnosing mechanisms of changes. Furthermore, our results suggest that remineralization in the surface end-member is more critical than the remineralization along the transport pathway from the near-surface formation region to the deep ocean, especially during the early deglaciation.
-
ArticleCoherent response of Antarctic Intermediate Water and Atlantic meridional overturning circulation during the last deglaciation : reconciling contrasting neodymium isotope reconstructions from the tropical Atlantic(John Wiley & Sons, 2017-10-24) Gu, Sifan ; Liu, Zhengyu ; Zhang, Jiaxu ; Rempfer, Johannes ; Joos, Fortunat ; Oppo, Delia W.Antarctic Intermediate Water (AAIW) plays important roles in the global climate system and the global ocean nutrient and carbon cycles. However, it is unclear how AAIW responds to global climate changes. In particular, neodymium isotopic composition (εNd) reconstructions from different locations from the tropical Atlantic have led to a debate on the relationship between northward penetration of AAIW into the tropical Atlantic and the Atlantic meridional overturning circulation (AMOC) variability during the last deglaciation. We resolve this controversy by studying the transient oceanic evolution during the last deglaciation using a neodymium-enabled ocean model. Our results suggest a coherent response of AAIW and AMOC: when AMOC weakens, the northward penetration and transport of AAIW decrease while its depth and thickness increase. Our study highlights that as part of the return flow of the North Atlantic Deep Water, the northward penetration of AAIW in the Atlantic is determined predominately by AMOC intensity. Moreover, the inconsistency among different tropical Atlantic εNd reconstructions is reconciled by considering their corresponding core locations and depths, which were influenced by different water masses in the past. The very radiogenic water from the bottom of the Gulf of Mexico and the Caribbean Sea, which was previously overlooked in the interpretations of deglacial εNd variability, can be transported to shallow layers during active AMOC and modulates εNd in the tropical Atlantic. Changes in the AAIW core depth must also be considered. Thus, interpretation of εNd reconstructions from the tropical Atlantic is more complicated than suggested in previous studies.
-
ArticleAssessing the potential capability of reconstructing glacial Atlantic water masses and AMOC using multiple proxies in CESM(Elsevier, 2020-05-06) Gu, Sifan ; Liu, Zhengyu ; Oppo, Delia W. ; Lynch-Stieglitz, Jean ; Jahn, Alexandra ; Zhang, Jiaxu ; Wu, LixinReconstructing the Atlantic Meridional Overturning Circulation (AMOC) during the Last Glacial Maximum (LGM) is essential for understanding glacial-interglacial climate change and the carbon cycle. However, despite many previous studies, uncertainties remain regarding the glacial water mass distributions in the Atlantic and the AMOC intensity. Here we use an isotope enabled ocean model with multiple geotracers (δ 13 C,E Νd,231 Pa/ 230Th,δ 18 Ο and Δ 14 C) and idealized water tracers to study the potential constraints on LGM ocean circulation from multiple proxies. Our model suggests that the glacial Atlantic water mass distribution can be accurately constrained by the air-sea gas exchange signature of water masses (δ13 C AS), but E Nd might overestimate the North Atlantic Deep Water (NADW) percentage in the deep Atlantic probably because of the boundary source of Nd. A sensitivity experiment with an AMOC of similar geometry but much weaker strength suggests that the correct AMOC geometry is more important than the AMOC strength for simulating the observed glacial δ13 C AS and E Nd and distributions. The kinematic tracer 231Pa/230Th is sensitive to AMOC intensity, but the interpretation might be complicated by the AMOC geometry and AABW transport changes during the LGM. δ 18 Ο in the benthic foraminifera (δ 18 Οc) from the Florida Straits provides a consistent measure of the upper ocean boundary current in the model, which potentially provides an unambiguous method to reconstruct glacial AMOC intensity. Finally, we propose that the moderate difference between AMOC intensity at LGM and PD, if any, is caused by the competition of the responses to CO2 forcing and continental ice sheet forcing.
-
ArticleAtlantic circulation and ice sheet influences on upper South Atlantic temperatures during the last deglaciation(American Geophysical Union, 2019-05-28) Umling, Natalie E. ; Oppo, Delia W. ; Chen, P. ; Yu, Jimin ; Liu, Zhengyu ; Yan, Mi ; Gebbie, Geoffrey A. ; Lund, David C. ; Pietro, Kathryn R. ; Jin, Z. D. ; Huang, Kuo-Fang ; Costa, Karen ; Toledo, Felipe Antonio de LimaAtlantic Meridional Overturning Circulation (AMOC) disruption during the last deglaciation is hypothesized to have caused large subsurface ocean temperature anomalies, but records from key regions are not available to test this hypothesis, and other possible drivers of warming have not been fully considered. Here, we present the first reliable evidence for subsurface warming in the South Atlantic during Heinrich Stadial 1, confirming the link between large‐scale heat redistribution and AMOC. Warming extends across the Bølling‐Allerød despite predicted cooling at this time, thus spanning intervals of both weak and strong AMOC indicating another forcing mechanism that may have been previously overlooked. Transient model simulations and quasi‐conservative water mass tracers suggest that reduced northward upper ocean heat transport was responsible for the early deglacial (Heinrich Stadial 1) accumulation of heat at our shallower (~1,100 m) site. In contrast, the results suggest that warming at our deeper site (~1,900 m) site was dominated by southward advection of North Atlantic middepth heat anomalies. During the Bølling‐Allerød, the demise of ice sheets resulted in oceanographic changes in the North Atlantic that reduced convective heat loss to the atmosphere, causing subsurface warming that overwhelmed the cooling expected from an AMOC reinvigoration. The data and simulations suggest that rising atmospheric CO2 did not contribute significantly to deglacial subsurface warming at our sites.
-
PreprintThe role of North Brazil Current transport in the paleoclimate of the Brazilian Nordeste margin and paleoceanography of the western tropical Atlantic during the late Quaternary( 2014-05) Nace, Trevor E. ; Baker, Paul A. ; Dwyer, Gary S. ; Silva, Cleverson G. ; Rigsby, Catherine A. ; Burns, Stephen J. ; Giosan, Liviu ; Otto-Bliesner, Bette ; Liu, Zhengyu ; Zhu, JiangReconstructions of surface paleoceanographic conditions of the western equatorial Atlantic and past climates of the adjacent Northeast Brazilian (the "Nordeste") continental margin were undertaken by analyzing sediments from a piston core and associated gravity and box cores recovered from 3107 meter water depth at 0° 20’ N on the equatorial Brazilian continental slope. The record is dated by radiocarbon analysis and oxygen isotopic stratigraphy of planktonic foraminifers and spans from near- modern to approximately 110 Ka. High-resolution XRF analysis provides insight into the paleoclimate history of the Nordeste during the last glacial interval. Several large-amplitude and abrupt peaks are observed in the time series of Ti/Ca and are usually accompanied by peaks of Fe/K. Together these record periods of increased precipitation and intense weathering on the adjacent continent and increased terrestrial sediment discharge from Nordeste rivers into the Atlantic. Within the limits of dating accuracy, most Ti/Ca peaks correlate with Heinrich events in the North Atlantic. This record thus corroborates, and extends back in time, the previous record of Arz et al (1998) determined on sediment cores from farther southeast along the Nordeste margin. Stable oxygen isotopic analysis and Mg/Ca paleothermometry on the near- surface-dwelling planktonic foraminiferal species Globierinoides ruber find that mean sea-surface temperature (SST) during glacial time (20 to 55 Ka, n = 97) was 23.89 ± 0.79 °C and the mean SST during the late Holocene (0 to 5 Ka, n = 14) was 26.89 ± 0.33 °C. SSTs were 0.5 to 2 °C higher and inferred sea-surface salinities were lower during most of the periods of elevated Ti/Ca, thus, as observed in previous studies, the western equatorial Atlantic was warm (at least locally) and the adjacent southern tropical continent was wet at the same time that the high-latitude North Atlantic was cold. Using the SYNTRACE-CCSM3 fully coupled climate model with transient forcing for the period 22 Ka to present, we find that decreased transport of the North Brazil Current co-occurs with reduced Atlantic meridional overturning circulation, and colder-than-normal SSTs in the North Atlantic region. These simulated conditions are invariably associated with significantly increased precipitation in the Nordeste region.
-
ArticleDeglacial δ18O and hydrologic variability in the tropical Pacific and Indian Oceans(Elsevier, 2013-11) Gibbons, Fern T. ; Oppo, Delia W. ; Mohtadi, Mahyar ; Rosenthal, Yair ; Cheng, Jun ; Liu, Zhengyu ; Linsley, Braddock K.Evidence from geologic archives suggests that there were large changes in the tropical hydrologic cycle associated with the two prominent northern hemisphere deglacial cooling events, Heinrich Stadial 1 (HS1; ∼19 to 15 kyr BP; kyr BP = 1000 yr before present) and the Younger Dryas (∼12.9 to 11.7 kyr BP). These hydrologic shifts have been alternatively attributed to high and low latitude origin. Here, we present a new record of hydrologic variability based on planktic foraminifera-derived δ18O of seawater (δ18Osw) estimates from a sediment core from the tropical Eastern Indian Ocean, and using 12 additional δ18Osw records, construct a single record of the dominant mode of tropical Eastern Equatorial Pacific and Indo-Pacific Warm Pool (IPWP) hydrologic variability. We show that deglacial hydrologic shifts parallel variations in the reconstructed interhemispheric temperature gradient, suggesting a strong response to variations in the Atlantic Meridional Overturning Circulation and the attendant heat redistribution. A transient model simulation of the last deglaciation suggests that hydrologic changes, including a southward shift in the Intertropical Convergence Zone (ITCZ) which likely occurred during these northern hemisphere cold events, coupled with oceanic advection and mixing, resulted in increased salinity in the Indonesian region of the IPWP and the eastern tropical Pacific, which is recorded by the δ18Osw proxy. Based on our observations and modeling results we suggest the interhemispheric temperature gradient directly controls the tropical hydrologic cycle on these time scales, which in turn mediates poleward atmospheric heat transport.
-
ThesisTime-dependent ventilated thermocline(Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1991-09) Liu, ZhengyuIn this thesis, I study the time-varying behavior of a ventila ted thermocline with basin scales at annual and decadal time scales. The variability is forced by three external forcings: the wind stress (chapter 3), the surface heat flux (chapter 4) and the upwelling along the eastern boundary (chapter 5). It is found that the thermocline variability is forced mainly by wind in a shadow zone while m~inly by surface buoyancy flux in a ventilated zone. A two-layer planetary geostrophic model is developed (chapter 2) to simulate a thermocline. The model includes some novel physical mechanisms. Most importantly, it captures the essential feature of subduction; it also is able to account for a time-varying surface temperature. The equation for the interface is a quasi-linear equation, which can be solved analytically by the method of characteristics. The effect of a varying Ekman pumping is investigated. In a shadow zone, it is found that the driving due to the Ekman pumping is mainly balanced by the propagation of planetary waves. However, in a ventilated zone, the cold advection of subducted water plays the essential role in opposing the Ekman pumping. The different dynamics also results in different thermocline variability between the two zones. After a change of Ekman pumping, in the shadow zone, since the baroclinic Ross by wave responds to a changing Ekman pumping slowly (in years to decades), an imbalance arises between the Rossby wave and the Ekman pumping, which then excites thermocline variability. However, in the ventilated zone, both the advection and the Ekman pumping vary rapidly after a barotropic process (about one week) to reach a new steady balance, leaving little thermocline variability. In addition, the evolution of the thermocline and circulation are also discussed. Furthermore, with a periodic Ekman pumping, it is found that linear solutions are approximate the fully nonlinear solution well, particularly for annual forcings. However, the linear disturbance is strongly affected by the basic thermocline structure and circulation. The divergent group velocity field, which is mainly caused by the divergent Sverdrup flow field, produces a decay effect on disturbances. The mean thermocline structure also strongly affects the relative importance of the local Ekman pumping and remote Rossby waves. As a result, in a shadow zone, local response dominates for a shallow interface while the remote Rossby wave dominates for a deep interface. With a strong decadal forcing, the nonlinearity becomes important in the shadow zone, particularly in the western part. The time-mean thermocline which results, becomes shallower than the steady thermocline under the mean Ekman pumping. Then, we investigate the effect on the permanent thermocline by a moving outcrop line, which simulates the effect of a varying surface heat flux. The two layer model is modified by adding an (essentially passive) mixed layer atop. The outcrop line and the mixed layer depth are specified. It is found that, opposite to a surface wind stress, a surface buoyancy flux causes strong variability in the ventilated zone through subducted water while it affects the shadow zone very little. Furthermore, two regimes of buoyancy-forced solution are found. When the outcrop line moves slowly, the solutions are non-entrainment solutions. For these solutions, the surface heat flux is mainly balanced by the horizontal advection. The mixed layer is never entrained. The time-mean thermocline is close to the steady thermocline with the time-mean outcrop line. When the outcrop line moves southward rapidly during the cooling season, the solutions become entrainment solutions. Now, deep vertical convection must occur, because the horizontal advection in the permanent thermocline is no longer strong enough to balance the surface cooling. The mixed layer penetrates rapidly such that water mass is entrained into the mixed layer through the bottom. The time-mean thermocline resembles the steady thermocline with the early spring mixed layer, as suggested by Stommel (1979). The local variability in the permanent thermocline is most efficiently produced by decadal forcings. Finally, two issues about the waves radiating from the eastern boundary are discussed. The first is the penetration of planetary waves across the southern boundary of a subtropical gyre. We find that the wave penetration across the southern boundary is substantially changed by the zonal variation of the thermocline structure. The zonal variation alters both the effective β and the wave front orientation. As a result, the wave penetration differs for interfaces at different depths. For an interface near the surface, part of the waves penetrate into the equatorial region. For middle depths, most waves will be trapped within the subtropical gyre. In contrast, for deep depths, all waves penetrate southward. The second issue of the eastern boundary waves mainly concerns with the breaking of planetary waves in the presence of an Ekman pumping and the associated two-dimensional mean flow. It is found that the breaking is affected significantly by an Ekman pumping and the associated mean flow. With an Ekman pumping, downwelling breaking is suppressed and the breaking time is delayed; upwelling breaking is enhanced and their times are shortened. The breaking times and positions are mainly determined by the maximum vertical perturbation speed while the intensity of the breaking front mainly depends on the amplitude of the perturbation. The intensity of a breaking front increases with the amplitude of the forcing, but decreases with the distance from the eastern boundary. The orientation of a breaking front is overall in northeast-southwest (x ~ -1/f2).
-
ArticleNorth Atlantic cooling triggered a zonal mode over the Indian Ocean during Heinrich Stadial 1(American Association for the Advancement of Science, 2023-01-04) Du, Xiaojing ; Russell, James M. ; Liu, Zhengyu ; Otto-Bliesner, Bette L. ; Oppo, Delia W. ; Mohtadi, Mahyar ; Zhu, Chenyu ; Galy, Valier V. ; Schefuß, Enno ; Yan, Yan ; Rosenthal, Yair ; Dubois, Nathalie ; Arbuszewski, Jennifer ; Gao, YuAbrupt changes in the Atlantic meridional overturning circulation (AMOC) are thought to affect tropical hydroclimate through adjustment of the latitudinal position of the intertropical convergence zone (ITCZ). Heinrich Stadial 1 (HS1) involves the largest AMOC reduction in recent geological time; however, over the tropical Indian Ocean (IO), proxy records suggest zonal anomalies featuring intense, widespread drought in tropical East Africa versus generally wet but heterogeneous conditions in the Maritime Continent. Here, we synthesize proxy data and an isotope-enabled transient deglacial simulation and show that the southward ITCZ shift over the eastern IO during HS1 strengthens IO Walker circulation, triggering an east-west precipitation dipole across the basin. This dipole reverses the zonal precipitation anomalies caused by the exposed Sunda and Sahul shelves due to glacial lower sea level. Our study illustrates how zonal modes of atmosphere-ocean circulation can amplify or reverse global climate anomalies, highlighting their importance for future climate change.