Romanou Anastasia

No Thumbnail Available
Last Name
Romanou
First Name
Anastasia
ORCID
0000-0001-5241-4772

Search Results

Now showing 1 - 3 of 3
  • Article
    Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP)
    (Copernicus Publications on behalf of the European Geosciences Union, 2017-06-09) Orr, James C. ; Najjar, Raymond G. ; Aumont, Olivier ; Bopp, Laurent ; Bullister, John L. ; Danabasoglu, Gokhan ; Doney, Scott C. ; Dunne, John P. ; Dutay, Jean-Claude ; Graven, Heather ; Griffies, Stephen M. ; John, Jasmin G. ; Joos, Fortunat ; Levin, Ingeborg ; Lindsay, Keith ; Matear, Richard J. ; McKinley, Galen A. ; Mouchet, Anne ; Oschlies, Andreas ; Romanou, Anastasia ; Schlitzer, Reiner ; Tagliabue, Alessandro ; Tanhua, Toste ; Yool, Andrew
    The Ocean Model Intercomparison Project (OMIP) focuses on the physics and biogeochemistry of the ocean component of Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). OMIP aims to provide standard protocols and diagnostics for ocean models, while offering a forum to promote their common assessment and improvement. It also offers to compare solutions of the same ocean models when forced with reanalysis data (OMIP simulations) vs. when integrated within fully coupled Earth system models (CMIP6). Here we detail simulation protocols and diagnostics for OMIP's biogeochemical and inert chemical tracers. These passive-tracer simulations will be coupled to ocean circulation models, initialized with observational data or output from a model spin-up, and forced by repeating the 1948–2009 surface fluxes of heat, fresh water, and momentum. These so-called OMIP-BGC simulations include three inert chemical tracers (CFC-11, CFC-12, SF6) and biogeochemical tracers (e.g., dissolved inorganic carbon, carbon isotopes, alkalinity, nutrients, and oxygen). Modelers will use their preferred prognostic BGC model but should follow common guidelines for gas exchange and carbonate chemistry. Simulations include both natural and total carbon tracers. The required forced simulation (omip1) will be initialized with gridded observational climatologies. An optional forced simulation (omip1-spunup) will be initialized instead with BGC fields from a long model spin-up, preferably for 2000 years or more, and forced by repeating the same 62-year meteorological forcing. That optional run will also include abiotic tracers of total dissolved inorganic carbon and radiocarbon, CTabio and 14CTabio, to assess deep-ocean ventilation and distinguish the role of physics vs. biology. These simulations will be forced by observed atmospheric histories of the three inert gases and CO2 as well as carbon isotope ratios of CO2. OMIP-BGC simulation protocols are founded on those from previous phases of the Ocean Carbon-Cycle Model Intercomparison Project. They have been merged and updated to reflect improvements concerning gas exchange, carbonate chemistry, and new data for initial conditions and atmospheric gas histories. Code is provided to facilitate their implementation.
  • Article
    Inconsistent strategies to spin up models in CMIP5 : implications for ocean biogeochemical model performance assessment
    (Copernicus Publications on behalf of the European Geosciences Union, 2016-05-12) Seferian, Roland ; Gehlen, Marion ; Bopp, Laurent ; Resplandy, Laure ; Orr, James ; Marti, Olivier ; Dunne, John P. ; Christian, James R. ; Doney, Scott C. ; Ilyina, Tatiana ; Lindsay, Keith ; Halloran, Paul R. ; Heinze, Christoph ; Segschneider, Joachim ; Tjiputra, Jerry ; Aumont, Olivier ; Romanou, Anastasia
    During the fifth phase of the Coupled Model Intercomparison Project (CMIP5) substantial efforts were made to systematically assess the skill of Earth system models. One goal was to check how realistically representative marine biogeochemical tracer distributions could be reproduced by models. In routine assessments model historical hindcasts were compared with available modern biogeochemical observations. However, these assessments considered neither how close modeled biogeochemical reservoirs were to equilibrium nor the sensitivity of model performance to initial conditions or to the spin-up protocols. Here, we explore how the large diversity in spin-up protocols used for marine biogeochemistry in CMIP5 Earth system models (ESMs) contributes to model-to-model differences in the simulated fields. We take advantage of a 500-year spin-up simulation of IPSL-CM5A-LR to quantify the influence of the spin-up protocol on model ability to reproduce relevant data fields. Amplification of biases in selected biogeochemical fields (O2, NO3, Alk-DIC) is assessed as a function of spin-up duration. We demonstrate that a relationship between spin-up duration and assessment metrics emerges from our model results and holds when confronted with a larger ensemble of CMIP5 models. This shows that drift has implications for performance assessment in addition to possibly aliasing estimates of climate change impact. Our study suggests that differences in spin-up protocols could explain a substantial part of model disparities, constituting a source of model-to-model uncertainty. This requires more attention in future model intercomparison exercises in order to provide quantitatively more correct ESM results on marine biogeochemistry and carbon cycle feedbacks.
  • Working Paper
    Synthesis and Intercomparison of Ocean Carbon Uptake in CMIP6 Models workshop report, December 8-9, 2018 Washington, DC
    ( 2019-04) Dunne, John P. ; Romanou, Anastasia ; McKinley, Galen A. ; Long, Matthew C. ; Doney, Scott C.
    From the Introduction: This workshop served as an important opportunity to improve communication between ocean carbon cycle scientists, both across sub-disciplines centering on observations, theory, models, and synthesis, and across career levels from graduate student to senior scientist. Participants shared questions, knowledge, and perceived challenges on the weaknesses of CMIP5 and CMIP6 models, potential observational constraints, and emerging theory. The workshop provided many opportunities for the development of collaborative project ideas through oral, poster, and moderated group discussion sessions, with a major emphasis on the upcoming December 2019 manuscript submission deadline to contribute to the IPCC Sixth Assessment. Participants also provided feedback to modeling centers on novel ways to push this community and the models forward, thinking beyond the currently planned suite of CMIP6 modeling activities.