Cox Rachel L.

No Thumbnail Available
Last Name
First Name
Rachel L.

Search Results

Now showing 1 - 2 of 2
  • Preprint
    Identification of DeltaN isoform and polyadenylation site choice variants in molluscan p63/p73 -like homologues
    ( 2006-07-25) Muttray, Annette F. ; Cox, Rachel L. ; Reinisch, Carol L. ; Baldwin, Susan A.
    The p53 family of transcription factors has been implicated in many vertebrate cancers. Altered p53 and p73 protein expression observed in leukemic cells of mollusks suggests that these transcription factors might be involved in invertebrate cancers as well. Here, we fully characterize the mRNA of four novel p53-like variants in the bivalve mollusks Mytilus trossulus (bay mussel) and Mytilus edulis (blue mussel). These species, widely used for environmental assessment, develop a haemic neoplasia (leukemia) that is frequently fatal. The correlation between expression of p53 and its close relative p73 and onset of molluskan leukemia was documented previously. We report the sequences of two distinct and novel p63/p73-like mRNAs, amplified by polymerase chain reaction (PCR) from both species. One of the p63/p73-like isoforms contains a 360 nt truncation in the 5' coding region. Based on this truncation and concomitant lack of a trans-activation (TA) domain, we designate this variant as a DeltaNp63/p73-like isoform: the first to be reported in an invertebrate species. In mammalian species, DeltaNp73 potently inhibits the tumor-suppressive function of p73 and p53, and its over-expression serves as a robust marker for mammalian cancer. In addition, we report on the occurrence of alternate polyadenylation sites in the molluskan p63/p73: one proximal and one distal site, which differ by 1260 nt. We hypothesize that differential expression of various molluskan p63/p73-like isoforms, controlled in part by polyadenylation site choice variation, may help to interpret the apparently opposing roles of this gene in the development of cancer. Overall, this research further illustrates the utility of the molluskan model for studies involving the molecular mechanisms of oncogenesis in naturally occurring populations. The data presented here require a revisiting of hypotheses regarding evolution of the p53 gene family. Current hypotheses indicate that 1) the protostome gene family does not contain an intronic promoter for DeltaN expression and 2) p53 gene duplication did not occur in protostomes. Our characterization of DeltaN p63/73 in mussel suggests that molluskan p53 gene family members have acquired an intronic promoter or splicing mechanism, either by invention that predates the evolutionary split of deuterostoms from protostomes, or by parallel evolution. Our data also show that Mytilus p53, p63/p73 and DeltaNp63/p73 are identical in their core regions with variation limited to their C- and N-terminals. This supports the notion that alternative splicing, intronic promoter usage and polyadenylation site choice may lead to expression of distinct isoforms originating from one common gene.
  • Preprint
    Identification and phylogenetic comparison of p53 in two distinct mussel species (Mytilus)
    ( 2005-02-10) Muttray, Annette F. ; Cox, Rachel L. ; St-Jean, Sylvie D. ; van Poppelen, Paul ; Reinisch, Carol L. ; Baldwin, Susan A.
    The extent to which humans and wildlife are exposed to anthropogenic challenges is an important focus of environmental research. Potential use of p53 gene family marker(s) for aquatic environmental effects monitoring is the long-term goal of this research. The p53 gene is a tumor suppressor gene that is fundamental in cell cycle control and apoptosis. It is mutated or differentially expressed in about 50% of all human cancers and p53 family members are differentially expressed in leukemic clams. Here, we report the identification and characterization of the p53 gene in two species of Mytilus, Mytilus edulis and Mytilus trossulus, using RT-PCR with degenerate and specific primers to conserved regions of the gene. The Mytilus p53 proteins are 99.8% identical and closely related to clam (Mya) p53. In particular, the 3′ untranslated regions were examined to gain understanding of potential post-transcriptional regulatory pathways of p53 expression. We found nuclear and cytoplasmic polyadenylation elements, adenylate/uridylate-rich elements, and a K-box motif previously identified in other, unrelated genes. We also identified a new motif in the p53 3′UTR which is highly conserved across vertebrate and invertebrate species. Differences between the p53 genes of the two Mytilus species may be part of genetic determinants underlying variation in leukemia prevalence and/or development, but this requires further investigation. In conclusion, the conserved regions in these p53 paralogues may represent potential control points in gene expression. This information provides a critical first step in the evaluation of p53 expression as a potential marker for environmental assessment.