Parfitt
Rhys
Parfitt
Rhys
No Thumbnail Available
Search Results
Now showing
1 - 11 of 11
-
ArticleThe role of atmospheric fronts in austral winter precipitation changes across Australia(Royal Meteorological Society, 2022-06-24) Lawrence, Lindsay ; Parfitt, Rhys ; Ummenhofer, Caroline C.Over the past few decades, Southeast Australia has experienced severe regional climatic events and some of the most extreme droughts on record, linked in part to influences from both the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). In this article, the extent to which austral winter rainfall anomalies, in years leading into co-occurring ENSO and IOD events, are communicated specifically through variations in atmospheric fronts is quantified. The most extreme wet (dry) conditions occur in winters characterized by sea surface temperature anomaly patterns exhibiting features of La Niña-Negative IOD (El Niño-Positive IOD). It is found that most of these precipitation anomalies are related to changes in the precipitation associated with the passing of atmospheric fronts specifically. Although there is some suggestion that there are accompanying changes in the frequency of atmospheric fronts, the response appears to be dominated by changes in the amount of precipitation per individual atmospheric front. In addition, the distribution in the dynamic strength of individual atmospheric fronts remains relatively unchanged.
-
ArticleEmerging European winter precipitation pattern linked to atmospheric circulation changes over the North Atlantic region in recent decades(John Wiley & Sons, 2017-08-25) Ummenhofer, Caroline C. ; Seo, Hyodae ; Kwon, Young-Oh ; Parfitt, Rhys ; Brands, Swen ; Joyce, Terrence M.Dominant European winter precipitation patterns over the past century, along with their associated extratropical North Atlantic circulation changes, are evaluated using cluster analysis. Contrary to the four regimes traditionally identified based on daily wintertime atmospheric circulation patterns, five distinct seasonal precipitation regimes are detected here. Recurrent precipitation patterns in each regime are linked to changes in atmospheric blocking, storm track, and sea surface temperatures across the North Atlantic region. Multidecadal variability in the frequency of the precipitation patterns reveals more (fewer) winters with wet conditions in northern (southern) Europe in recent decades and an emerging distinct pattern of enhanced wintertime precipitation over the northern British Isles. This pattern has become unusually common since the 1980s and is associated with changes in moisture transport and more frequent atmospheric river events. The observed precipitation changes post-1950 coincide with changes in storm track activity over the central/eastern North Atlantic toward the northern British Isles.
-
ArticleImportance of Orography for Greenland cloud and melt response to atmospheric blocking(American Meteorological Society, 2020-04-16) Hahn, Lily ; Storelvmo, Trude ; Hofer, Stefan ; Parfitt, Rhys ; Ummenhofer, Caroline C.More frequent high pressure conditions associated with atmospheric blocking episodes over Greenland in recent decades have been suggested to enhance melt through large-scale subsidence and cloud dissipation, which allows more solar radiation to reach the ice sheet surface. Here we investigate mechanisms linking high pressure circulation anomalies to Greenland cloud changes and resulting cloud radiative effects, with a focus on the previously neglected role of topography. Using reanalysis and satellite data in addition to a regional climate model, we show that anticyclonic circulation anomalies over Greenland during recent extreme blocking summers produce cloud changes dependent on orographic lift and descent. The resulting increased cloud cover over northern Greenland promotes surface longwave warming, while reduced cloud cover in southern and marginal Greenland favors surface shortwave warming. Comparison with an idealized model simulation with flattened topography reveals that orographic effects were necessary to produce area-averaged decreasing cloud cover since the mid-1990s and the extreme melt observed in the summer of 2012. This demonstrates a key role for Greenland topography in mediating the cloud and melt response to large-scale circulation variability. These results suggest that future melt will depend on the pattern of circulation anomalies as well as the shape of the Greenland Ice Sheet.
-
ArticleFluxSat: measuring the ocean-atmosphere turbulent exchange of heat and moisture from space(MDPI, 2020-06-03) Gentemann, Chelle L. ; Clayson, Carol A. ; Brown, Shannon ; Lee, Tong ; Parfitt, Rhys ; Farrar, J. Thomas ; Bourassa, Mark A. ; Minnett, Peter J. ; Seo, Hyodae ; Gille, Sarah T. ; Zlotnicki, VictorRecent results using wind and sea surface temperature data from satellites and high-resolution coupled models suggest that mesoscale ocean–atmosphere interactions affect the locations and evolution of storms and seasonal precipitation over continental regions such as the western US and Europe. The processes responsible for this coupling are difficult to verify due to the paucity of accurate air–sea turbulent heat and moisture flux data. These fluxes are currently derived by combining satellite measurements that are not coincident and have differing and relatively low spatial resolutions, introducing sampling errors that are largest in regions with high spatial and temporal variability. Observational errors related to sensor design also contribute to increased uncertainty. Leveraging recent advances in sensor technology, we here describe a satellite mission concept, FluxSat, that aims to simultaneously measure all variables necessary for accurate estimation of ocean–atmosphere turbulent heat and moisture fluxes and capture the effect of oceanic mesoscale forcing. Sensor design is expected to reduce observational errors of the latent and sensible heat fluxes by almost 50%. FluxSat will improve the accuracy of the fluxes at spatial scales critical to understanding the coupled ocean–atmosphere boundary layer system, providing measurements needed to improve weather forecasts and climate model simulations.
-
ArticleSuper sites for advancing understanding of the oceanic and atmospheric boundary layers(Marine Technology Society, 2021-05-01) Clayson, Carol A. ; Centurioni, Luca R. ; Cronin, Meghan F. ; Edson, James B. ; Gille, Sarah T. ; Muller-Karger, Frank E. ; Parfitt, Rhys ; Riihimaki, Laura D. ; Smith, Shawn R. ; Swart, Sebastiaan ; Vandemark, Douglas ; Villas Bôas, Ana B. ; Zappa, Christopher J. ; Zhang, DongxiaoAir‐sea interactions are critical to large-scale weather and climate predictions because of the ocean's ability to absorb excess atmospheric heat and carbon and regulate exchanges of momentum, water vapor, and other greenhouse gases. These exchanges are controlled by molecular, turbulent, and wave-driven processes in the atmospheric and oceanic boundary layers. Improved understanding and representation of these processes in models are key for increasing Earth system prediction skill, particularly for subseasonal to decadal time scales. Our understanding and ability to model these processes within this coupled system is presently inadequate due in large part to a lack of data: contemporaneous long-term observations from the top of the marine atmospheric boundary layer (MABL) to the base of the oceanic mixing layer. We propose the concept of “Super Sites” to provide multi-year suites of measurements at specific locations to simultaneously characterize physical and biogeochemical processes within the coupled boundary layers at high spatial and temporal resolution. Measurements will be made from floating platforms, buoys, towers, and autonomous vehicles, utilizing both in-situ and remote sensors. The engineering challenges and level of coordination, integration, and interoperability required to develop these coupled ocean‐atmosphere Super Sites place them in an “Ocean Shot” class.
-
ArticleAir-sea fluxes with a focus on heat and momentum(Frontiers Media, 2019-07-31) Cronin, Meghan F. ; Gentemann, Chelle L. ; Edson, James B. ; Ueki, Iwao ; Bourassa, Mark A. ; Brown, Shannon ; Clayson, Carol A. ; Fairall, Christopher W. ; Farrar, J. Thomas ; Gille, Sarah T. ; Gulev, Sergey ; Josey, Simon A. ; Kato, Seiji ; Katsumata, Masaki ; Kent, Elizabeth ; Krug, Marjolaine ; Minnett, Peter J. ; Parfitt, Rhys ; Pinker, Rachel T. ; Stackhouse, Paul W., Jr. ; Swart, Sebastiaan ; Tomita, Hiroyuki ; Vandemark, Douglas ; Weller, Robert A. ; Yoneyama, Kunio ; Yu, Lisan ; Zhang, DongxiaoTurbulent and radiative exchanges of heat between the ocean and atmosphere (hereafter heat fluxes), ocean surface wind stress, and state variables used to estimate them, are Essential Ocean Variables (EOVs) and Essential Climate Variables (ECVs) influencing weather and climate. This paper describes an observational strategy for producing 3-hourly, 25-km (and an aspirational goal of hourly at 10-km) heat flux and wind stress fields over the global, ice-free ocean with breakthrough 1-day random uncertainty of 15 W m–2 and a bias of less than 5 W m–2. At present this accuracy target is met only for OceanSITES reference station moorings and research vessels (RVs) that follow best practices. To meet these targets globally, in the next decade, satellite-based observations must be optimized for boundary layer measurements of air temperature, humidity, sea surface temperature, and ocean wind stress. In order to tune and validate these satellite measurements, a complementary global in situ flux array, built around an expanded OceanSITES network of time series reference station moorings, is also needed. The array would include 500–1000 measurement platforms, including autonomous surface vehicles, moored and drifting buoys, RVs, the existing OceanSITES network of 22 flux sites, and new OceanSITES expanded in 19 key regions. This array would be globally distributed, with 1–3 measurement platforms in each nominal 10° by 10° box. These improved moisture and temperature profiles and surface data, if assimilated into Numerical Weather Prediction (NWP) models, would lead to better representation of cloud formation processes, improving state variables and surface radiative and turbulent fluxes from these models. The in situ flux array provides globally distributed measurements and metrics for satellite algorithm development, product validation, and for improving satellite-based, NWP and blended flux products. In addition, some of these flux platforms will also measure direct turbulent fluxes, which can be used to improve algorithms for computation of air-sea exchange of heat and momentum in flux products and models. With these improved air-sea fluxes, the ocean’s influence on the atmosphere will be better quantified and lead to improved long-term weather forecasts, seasonal-interannual-decadal climate predictions, and regional climate projections.
-
ArticleA simple diagnostic for the detection of atmospheric fronts(John Wiley & Sons, 2017-05-14) Parfitt, Rhys ; Czaja, Arnaud ; Seo, HyodaeIn this article, a simple diagnostic to identify atmospheric fronts objectively from gridded data sets is presented. For this diagnostic, fronts are identified as regions where the normalized product of the isobaric relative vorticity and horizontal temperature gradient exceeds a threshold value. The purpose is to introduce a method that is both robust and particularly straightforward in calculation. A climatology of atmospheric fronts, as well as the identification of an individual frontal system, is computed using this diagnostic. These are subsequently compared to a more traditional frontal detection method and the similarities and differences discussed.
-
ArticleA new framework for near‐surface wind convergence over the Kuroshio Extension and Gulf Stream in wintertime : the role of atmospheric fronts(John Wiley & Sons, 2018-11-21) Parfitt, Rhys ; Seo, HyodaeIt is well known that the wintertime time‐mean surface wind convergence patterns over the Kuroshio Extension and Gulf Stream show significant imprints of the underlying oceanic fronts. Previous studies have suggested that this collocation results from a time‐mean response to sea level pressure forcing from sea surface temperature gradients. However, more recent work has illustrated this phenomenon is heavily influenced by extratropical cyclones, although exact mechanisms are still debated. The purpose of this study is to introduce a new framework that explicitly distinguishes between two separate components in their contribution to the time‐mean surface wind convergence, that associated with and without atmospheric fronts. It is then argued that this distinction can help better explain the mechanisms driving the Kuroshio Extension and Gulf Stream influence on the atmosphere.
-
ArticleThe impact of SST resolution change in the ERA-Interim reanalysis on wintertime Gulf Stream frontal air-sea interaction(John Wiley & Sons, 2017-04-01) Parfitt, Rhys ; Czaja, Arnaud ; Kwon, Young-OhThis paper examines the sensitivity to a change in sea surface temperature (SST) resolution of the interaction between atmospheric and oceanic fronts in the Gulf Stream region in the ERA-Interim reanalysis data set. Two periods are considered, January 1979 to December 2001 (SST resolution 1° × 1°) and December 2010 to February 2016 (SST resolution 0.05° × 0.05°). The winter season from the latter 6 years of high-resolution SST is compared against six random periods of six wintertime seasons from the low-resolution SST period, to assess the robustness of the result against natural climate variability. In all comparisons, a significant change in frontal air-sea sensible heat flux exchange is found that is highly correlated to the change in mean SST gradient. This leads to both increases and decreases in occurrence of atmospheric fronts and mean precipitation of up to 30%. These results reemphasize the importance of high SST resolution in resolving the influence of oceanic fronts on weather and climate.
-
ArticleA monthly index for the large‐scale sea surface temperature gradient across the separated Gulf Stream(American Geophysical Union, 2022-12-14) Parfitt, Rhys ; Kwon, Young-Oh ; Andres, MagdalenaThe strong sea‐surface temperature (SST) gradient associated with the Gulf Stream (GS) is widely acknowledged to play an important role in shaping mid‐latitude weather and climate. Despite this, an index for the GS SST gradient has not yet been standardized in the literature. This paper introduces a monthly index for the large‐scale SST gradient across the separated GS based on the time‐varying GS position detected from sea‐surface height. Analysis suggests that the variations in the monthly average SST gradient throughout the year result primarily from SST variability to the north of the GS, with little contribution from SST to the south. The index exhibits a weak periodicity at ∼2 years. Sea level pressure and turbulent heat flux patterns suggest that variability in the large‐scale SST gradient is related to atmospheric (rather than oceanic) forcing. Ocean‐to‐atmosphere feedback does not persist throughout the year, but there is some evidence of wintertime feedback.
-
ArticleThe modulation of Gulf Stream influence on the troposphere by the eddy-driven jet(American Meteorological Society, 2020-04-13) Parfitt, Rhys ; Kwon, Young-OhThis study suggests that the Gulf Stream influence on the wintertime North Atlantic troposphere is most pronounced when the eddy-driven jet (EDJ) is farthest south and better collocated with the Gulf Stream. Using the reanalysis dataset NCEP-CFSR for December–February 1979–2009, the daily EDJ latitude is separated into three regimes (northern, central, and southern). It is found that the average trajectory of atmospheric fronts covaries with EDJ latitude. In the southern EDJ regime (~19% of the time), the frequency of near-surface atmospheric fronts that pass across the Gulf Stream is maximized. Analysis suggests that this leads to significant strengthening in near-surface atmospheric frontal convergence resulting from strong air–sea sensible heat flux gradients (due to strong temperature gradients in the atmosphere and ocean). In recent studies, it was shown that the pronounced band of time-mean near-surface wind convergence across the Gulf Stream is set by atmospheric fronts. Here, it is shown that an even smaller subset of atmospheric fronts—those associated with a southern EDJ—primarily sets the time mean, due to enhanced Gulf Stream air–sea interaction. Furthermore, statistically significant anomalies in vertical velocity extending well above the boundary layer are identified in association with changes in EDJ latitude. These anomalies are particularly strong for a southern EDJ and are spatially consistent with increases in near-surface atmospheric frontal convergence over the Gulf Stream. These results imply that much of the Gulf Stream influence on the time-mean atmosphere is modulated on synoptic time scales, and enhanced when the EDJ is farthest south.