Beaudoin David J.

No Thumbnail Available
Last Name
Beaudoin
First Name
David J.
ORCID
0000-0001-6270-9769

Search Results

Now showing 1 - 17 of 17
  • Preprint
    Identity of epibiotic bacteria on symbiontid euglenozoans in O2-depleted marine sediments : evidence for symbiont and host co-evolution
    ( 2010-06) Edgcomb, Virginia P. ; Breglia, S. A. ; Yubuki, Naoji ; Beaudoin, David J. ; Patterson, David J. ; Leander, Brian S. ; Bernhard, Joan M.
    A distinct subgroup of euglenozoans, referred to as the “Symbiontida,” has been described from oxygen-depleted and sulfidic marine environments. By definition, all members of this group carry epibionts that are intimately associated with underlying mitochondrion-derived organelles beneath the surface of the hosts. We have used molecular phylogenetic and ultrastructural evidence to identify the rod-shaped epibionts of two members of this group, Calkinsia aureus and Bihospites bacati, hand-picked from sediments from two separate oxygen-depleted, sulfidic environments. We identify their epibionts as closely related sulfur or sulfide oxidizing members of the Epsilon proteobacteria. The Epsilon proteobacteria generally play a significant role in deep-sea habitats as primary colonizers, primary producers, and/or in symbiotic associations. The epibionts likely fulfill a role in detoxifying the immediate surrounding environment for these two different hosts. The nearly identical rod-shaped epibionts on these two symbiontid hosts provides evidence for a co-evolutionary history between these two sets of partners. This hypothesis is supported by congruent tree topologies inferred from 18S and 16S rDNA from the hosts and bacterial epibionts, respectively. The eukaryotic hosts likely serve as a motile substrate that delivers the epibionts to the ideal locations with respect to the oxic/anoxic interface whereby their growth rates can be maximized, perhaps also allowing the host to cultivate a food source. Because symbiontid isolates and additional SSU rDNA gene sequences from this clade have now been recovered from many locations worldwide, the Symbiontida are likely more widespread and diverse than presently known.
  • Preprint
    Denitrification likely catalyzed by endobionts in an allogromiid foraminifer
    ( 2011-10) Bernhard, Joan M. ; Edgcomb, Virginia P. ; Casciotti, Karen L. ; McIlvin, Matthew R. ; Beaudoin, David J.
    Nitrogen can be a limiting macronutrient for carbon uptake by the marine biosphere. The process of denitrification (conversion of nitrate to gaseous compounds, including N2) removes bioavailable nitrogen, particularly in marine sediments, making it a key factor in the marine nitrogen budget. Benthic foraminifera reportedly perform complete denitrification, a process previously considered nearly exclusively performed by bacteria and archaea. If the ability to denitrify is widespread among these diverse and abundant protists, a paradigm shift is required for biogeochemistry and marine microbial ecology. However, to date, the mechanisms of foraminiferal denitrification are unclear and it is possible that the ability to perform complete denitrification is due to symbiont metabolism in some foraminiferal species. Using sequence analysis and GeneFISH, we show that for a symbiont-bearing foraminifer, the potential for denitrification resides in the endobionts. Results also identify the endobionts as denitrifying pseudomonads and show that the allogromiid accumulates nitrate intracellularly, presumably for use in denitrification. Endobionts have been observed within many foraminiferal species, and in the case of associations with denitrifying bacteria, may provide fitness for survival in anoxic conditions. These associations may have been a driving force for early foraminiferal diversification, which is thought to have occurred in the Neoproterozoic when anoxia was widespread.
  • Article
    CRISPR/Cas9-induced disruption of Bodo saltans paraflagellar rod-2 gene reveals its importance for cell survival
    (Society for Applied Microbiology, 2022-01-31) Gomaa, Fatma ; Li, Zhu-Hong ; Beaudoin, David J. ; Alzan, Heba ; Girguis, Peter R. ; Docampo, Roberto ; Edgcomb, Virginia P.
    Developing transfection protocols for marine protists is an emerging field that will allow the functional characterization of protist genes and their roles in organism responses to the environment. We developed a CRISPR/Cas9 editing protocol for Bodo saltans, a free-living kinetoplastid with tolerance to both marine and freshwater conditions and a close non-parasitic relative of trypanosomatids. Our results show that SaCas9/single-guide RNA (sgRNA) ribonucleoprotein (RNP) complex-mediated disruption of the paraflagellar rod 2 gene (BsPFR2) was achieved using electroporation-mediated transfection. The use of CRISPR/Cas9 genome editing can increase the efficiency of targeted homologous recombination when a repair DNA template is provided. Our sequence analysis suggests two mechanisms for repairing double-strand breaks in B. saltans are active; homologous-directed repair (HDR) utilizing an exogenous DNA template that carries an antibiotic resistance gene and likley non-homologous end joining (NHEJ). However, HDR was only achieved when a single (vs. multiple) SaCas9 RNP complex was provided. Furthermore, the biallelic knockout of BsPFR2 was detrimental for the cell, highlighting its essential role for cell survival because it facilitates the movement of food particles into the cytostome. Our Cas9/sgRNA RNP complex protocol provides a new tool for assessing gene functions in B. saltans and perhaps similar protists with polycistronic transcription.
  • Article
    Impacts of multiple stressors on a benthic foraminiferal community: a long-term experiment assessing response to ocean acidification, hypoxia and warming
    (Frontiers Media, 2021-04-22) Bernhard, Joan M. ; Wit, Johannes C. ; Starczak, Victoria R. ; Beaudoin, David J. ; Phalen, William G. ; McCorkle, Daniel C.
    Ocean chemistry is changing as a result of human activities. Atmospheric carbon dioxide (CO2) concentrations are increasing, causing an increase in oceanic pCO2 that drives a decrease in oceanic pH, a process called ocean acidification (OA). Higher CO2 concentrations are also linked to rising global temperatures that can result in more stratified surface waters, reducing the exchange between surface and deep waters; this stronger stratification, along with nutrient pollution, contributes to an expansion of oxygen-depleted zones (so called hypoxia or deoxygenation). Determining the response of marine organisms to environmental changes is important for assessments of future ecosystem functioning. While many studies have assessed the impact of individual or paired stressors, fewer studies have assessed the combined impact of pCO2, O2, and temperature. A long-term experiment (∼10 months) with different treatments of these three stressors was conducted to determine their sole or combined impact on the abundance and survival of a benthic foraminiferal community collected from a continental-shelf site. Foraminifera are well suited to such study because of their small size, relatively rapid growth, varied mineralogies and physiologies. Inoculation materials were collected from a ∼77-m deep site south of Woods Hole, MA. Very fine sediments (<53 μm) were used as inoculum, to allow the entire community to respond. Thirty-eight morphologically identified taxa grew during the experiment. Multivariate statistical analysis indicates that hypoxia was the major driving factor distinguishing the yields, while warming was secondary. Species responses were not consistent, with different species being most abundant in different treatments. Some taxa grew in all of the triple-stressor samples. Results from the experiment suggest that foraminiferal species’ responses will vary considerably, with some being negatively impacted by predicted environmental changes, while other taxa will tolerate, and perhaps even benefit, from deoxygenation, warming and OA.
  • Article
    Coexistence of multiple proteobacterial endosymbionts in the gills of the wood-boring bivalve Lyrodus pedicellatus (Bivalvia: Teredinidae)
    (American Society for Microbiology, 2002-12) Distel, Daniel L. ; Beaudoin, David J. ; Morrill, Wendy
    Wood-boring bivalves of the family Teredinidae (commonly called shipworms) are known to harbor dense populations of gram-negative bacteria within specialized cells (bacteriocytes) in their gills. These symbionts are thought to provide enzymes, e.g., cellulase and dinitrogenase, which assist the host in utilizing wood as a primary food source. A cellulolytic, dinitrogen-fixing bacterium, Teredinibacter turnerae, has been isolated from the gill tissues of numerous teredinid bivalves and has been proposed to constitute the sole or predominant symbiont of this bivalve family. Here we demonstrate that one teredinid species, Lyrodus pedicellatus, contains at least four distinct bacterial 16S rRNA types within its gill bacteriocytes, one of which is identical to that of T. turnerae. Phylogenetic analyses indicate that the three newly detected ribotypes are derived from gamma proteobacteria that are related to but distinct (>6.5% sequence divergence) from T. turnerae. In situ hybridizations with 16S rRNA-directed probes demonstrated that the pattern of occurrence of symbiont ribotypes within bacteriocytes was predictable and specific, with some bacteriocytes containing two symbiont ribotypes. However, only two of the six possible pairwise combinations of the four ribotypes were observed to cooccur within the same host cells. The results presented here are consistent with the existence of a complex multiple symbiosis in this shipworm species.
  • Article
    Metazoans of redoxcline sediments in Mediterranean deep-sea hypersaline anoxic basins
    (BioMed Central, 2015-12-10) Bernhard, Joan M. ; Morrison, Colin R. ; Pape, Ellen ; Beaudoin, David J. ; Todaro, M. Antonio ; Pachiadaki, Maria G. ; Kormas, Konstantinos Ar. ; Edgcomb, Virginia P.
    The deep-sea hypersaline anoxic basins (DHABs) of the Mediterranean (water depth ~3500 m) are some of the most extreme oceanic habitats known. Brines of DHABs are nearly saturated with salt, leading many to suspect they are uninhabitable for eukaryotes. While diverse bacterial and protistan communities are reported from some DHAB haloclines and brines, loriciferans are the only metazoan reported to inhabit the anoxic DHAB brines. Our goal was to further investigate metazoan communities in DHAB haloclines and brines. We report observations from sediments of three DHAB (Urania, Discovery, L’Atalante) haloclines, comparing these to observations from sediments underlying normoxic waters of typical Mediterranean salinity. Due to technical difficulties, sampling of the brines was not possible. Morphotype analysis indicates nematodes are the most abundant taxon; crustaceans, loriciferans and bryozoans were also noted. Among nematodes, Daptonema was the most abundant genus; three morphotypes were noted with a degree of endemicity. The majority of rRNA sequences were from planktonic taxa, suggesting that at least some individual metazoans were preserved and inactive. Nematode abundance data, in some cases determined from direct counts of sediments incubated in situ with CellTrackerTM Green, was patchy but generally indicates the highest abundances in either normoxic control samples or in upper halocline samples; nematodes were absent or very rare in lower halocline samples. Ultrastructural analysis indicates the nematodes in L’Atalante normoxic control sediments were fit, while specimens from L’Atalante upper halocline were healthy or had only recently died and those from the lower halocline had no identifiable organelles. Loriciferans, which were only rarely encountered, were found in both normoxic control samples as well as in Discovery and L’Atalante haloclines. It is not clear how a metazoan taxon could remain viable under this wide range of conditions. We document a community of living nematodes in normoxic, normal saline deep-sea Mediterranean sediments and in the upper halocline portions of the DHABs. Occurrences of nematodes in mid-halocline and lower halocline samples did not provide compelling evidence of a living community in those zones. The possibility of a viable metazoan community in brines of DHABs is not supported by our data at this time.
  • Article
    Potential importance of physiologically diverse benthic foraminifera in sedimentary nitrate storage and respiration
    (American Geophysical Union, 2012-07-03) Bernhard, Joan M. ; Casciotti, Karen L. ; McIlvin, Matthew R. ; Beaudoin, David J. ; Visscher, Pieter T. ; Edgcomb, Virginia P.
    Until recently, the process of denitrification (conversion of nitrate or nitrite to gaseous products) was thought to be performed exclusively by prokaryotes and fungi. The finding that foraminifera perform complete denitrification could impact our understanding of nitrate removal in sediments as well as our understanding of eukaryotic respiration, especially if it is widespread. However, details of this process and the subcellular location of these reactions in foraminifera remain uncertain. For example, prokaryotic endobionts, rather than the foraminifer proper, could perform denitrification, as has been shown recently in an allogromiid foraminifer. Here, intracellular nitrate concentrations and isotope ratios (δ15NNO3 and δ18ONO3) were measured to assess the nitrate dynamics in four benthic foraminiferal species (Bolivina argentea, Buliminella tenuata, Fursenkoina cornuta, Nonionella stella) with differing cellular architecture and associations with microbial endobionts, recovered from Santa Barbara Basin, California. Cellular nitrate concentrations were high (12–217 mM) in each species, and intracellular nitrate often had elevated δ15NNO3 and δ18ONO3 values. Experiments including suboxic and anoxic incubations of B. argentea revealed a decrease in intracellular nitrate concentration and an increase in δ15NNO3 and δ18ONO3 over time, indicating nitrate respiration and/or denitrification within the foraminifera. Results illustrate that nitrate reduction occurs in a range of foraminiferal species, including some possessing endobionts (including a chloroplast-sequestering species) and others lacking endobionts, implying that microbial associates may not solely be responsible for this process in foraminifera. Furthermore, we show that benthic foraminifera may represent important reservoirs of nitrate storage in sediments, as well as mediators of its removal.
  • Article
    Benthic protists and fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments
    (Frontiers Media, 2014-11-12) Bernhard, Joan M. ; Kormas, Konstantinos Ar. ; Pachiadaki, Maria G. ; Rocke, Emma ; Beaudoin, David J. ; Morrison, Colin R. ; Visscher, Pieter T. ; Cobban, Alec ; Starczak, Victoria R. ; Edgcomb, Virginia P.
    Some of the most extreme marine habitats known are the Mediterranean deep hypersaline anoxic basins (DHABs; water depth ∼3500 m). Brines of DHABs are nearly saturated with salt, leading many to suspect they are uninhabitable for eukaryotes. While diverse bacterial and protistan communities are reported from some DHAB water-column haloclines and brines, the existence and activity of benthic DHAB protists have rarely been explored. Here, we report findings regarding protists and fungi recovered from sediments of three DHAB (Discovery, Urania, L’ Atalante) haloclines, and compare these to communities from sediments underlying normoxic waters of typical Mediterranean salinity. Halocline sediments, where the redoxcline impinges the seafloor, were studied from all three DHABs. Microscopic cell counts suggested that halocline sediments supported denser protist populations than those in adjacent control sediments. Pyrosequencing analysis based on ribosomal RNA detected eukaryotic ribotypes in the halocline sediments from each of the three DHABs, most of which were fungi. Sequences affiliated with Ustilaginomycotina Basidiomycota were the most abundant eukaryotic signatures detected. Benthic communities in these DHABs appeared to differ, as expected, due to differing brine chemistries. Microscopy indicated that only a low proportion of protists appeared to bear associated putative symbionts. In a considerable number of cases, when prokaryotes were associated with a protist, DAPI staining did not reveal presence of any nuclei, suggesting that at least some protists were carcasses inhabited by prokaryotic scavengers.
  • Article
    Structured multiple endosymbiosis of bacteria and archaea in a ciliate from marine sulfidic sediments : a survival mechanism in low oxygen, sulfidic sediments?
    (Frontiers Media, 2011-03-25) Edgcomb, Virginia P. ; Leadbetter, Edward R. ; Bourland, William A. ; Beaudoin, David J. ; Bernhard, Joan M.
    Marine micro-oxic to sulfidic environments are sites of intensive biogeochemical cycling and elemental sequestration, where prokaryotes are major driving forces mediating carbon, nitrogen, sulfur, phosphorus, and metal cycles, important from both biogeochemical and evolutionary perspectives. Associations between single-celled eukaryotes and bacteria and/or archaea are common in such habitats. Here we describe a ciliate common in the micro-oxic to anoxic, typically sulfidic, sediments of Santa Barbara Basin (CA, USA). The ciliate is 95% similar to Parduzcia orbis (18S rRNA). Transmission electron micrographs reveal clusters of at least three different endobiont types organized within membrane-bound sub-cellular regions. Catalyzed reporter deposition–fluorescent in situ hybridization and 16S rRNA clone libraries confirm the symbionts include up to two sulfate reducers (Desulfobulbaceae, Desulfobacteraceae), a methanogen (Methanobacteriales), and possibly a Bacteroidete (Cytophaga) and a Type I methanotroph, suggesting synergistic metabolisms in this environment. This case study is discussed in terms of implications to biogeochemistry, and benthic ecology.
  • Article
    High grazing rates on cryptophyte algae in Chesapeake Bay
    (Frontiers Media, 2018-07-25) Johnson, Matthew D. ; Beaudoin, David J. ; Frada, Miguel J. ; Brownlee, Emily F. ; Stoecker, Diane K.
    Cryptophyte algae are globally distributed photosynthetic flagellates found in freshwater, estuarine, and neritic ecosystems. While cryptophytes can be highly abundant and are consumed by a wide variety of protistan predators, few studies have sought to quantify in situ grazing rates on their populations. Here we show that autumnal grazing rates on in situ communities of cryptophyte algae in Chesapeake Bay are high throughout the system, while growth rates, particularly in the lower bay, were low. Analysis of the genetic diversity of cryptophyte populations within dilution experiments suggests that microzooplankton may be selectively grazing the fastest-growing members of the population, which were generally Teleaulax spp. We also demonstrate that potential grazing rates of ciliates and dinoflagellates on fluorescently labeled (FL) Rhodomonas salina, Storeatula major, and Teleaulax amphioxeia can be high (up to 149 prey predator−1 d−1), and that a Gyrodinium sp. and Mesodinium rubrum could be selective grazers. Potential grazing was highest for heterotrophic dinoflagellates, but due to its abundance, M. rubrum also had a high overall impact. This study reveals that cryptophyte algae in Chesapeake Bay can experience extremely high grazing pressure from phagotrophic protists, and that this grazing likely shapes their community diversity.
  • Article
    Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments
    (American Association for the Advancement of Science, 2021-05-26) Gomaa, Fatma ; Utter, Daniel R. ; Powers, Christopher ; Beaudoin, David J. ; Edgcomb, Virginia P. ; Filipsson, Helena L. ; Hansel, Colleen M. ; Wankel, Scott D. ; Zhang, Ying ; Bernhard, Joan M.
    Oceanic deoxygenation is increasingly affecting marine ecosystems; many taxa will be severely challenged, yet certain nominally aerobic foraminifera (rhizarian protists) thrive in oxygen-depleted to anoxic, sometimes sulfidic, sediments uninhabitable to most eukaryotes. Gene expression analyses of foraminifera common to severely hypoxic or anoxic sediments identified metabolic strategies used by this abundant taxon. In field-collected and laboratory-incubated samples, foraminifera expressed denitrification genes regardless of oxygen regime with a putative nitric oxide dismutase, a characteristic enzyme of oxygenic denitrification. A pyruvate:ferredoxin oxidoreductase was highly expressed, indicating the capability for anaerobic energy generation during exposure to hypoxia and anoxia. Near-complete expression of a diatom’s plastid genome in one foraminiferal species suggests kleptoplasty or sequestration of functional plastids, conferring a metabolic advantage despite the host living far below the euphotic zone. Through a unique integration of functions largely unrecognized among “typical” eukaryotes, benthic foraminifera represent winning microeukaryotes in the face of ongoing oceanic deoxygenation.
  • Article
    Fungal and prokaryotic activities in the marine subsurface biosphere at Peru Margin and Canterbury Basin inferred from RNA-based analyses and microscopy
    (Fromtiers Media, 2016-06-09) Pachiadaki, Maria G. ; Redou, Vanessa ; Beaudoin, David J. ; Burgaud, Gaëtan ; Edgcomb, Virginia P.
    The deep sedimentary biosphere, extending 100s of meters below the seafloor harbors unexpected diversity of Bacteria, Archaea, and microbial eukaryotes. Far less is known about microbial eukaryotes in subsurface habitats, albeit several studies have indicated that fungi dominate microbial eukaryotic communities and fungal molecular signatures (of both yeasts and filamentous forms) have been detected in samples as deep as 1740 mbsf. Here, we compare and contrast fungal ribosomal RNA gene signatures and whole community metatranscriptomes present in sediment core samples from 6 and 95 mbsf from Peru Margin site 1229A and from samples from 12 and 345 mbsf from Canterbury Basin site U1352. The metatranscriptome analyses reveal higher relative expression of amino acid and peptide transporters in the less nutrient rich Canterbury Basin sediments compared to the nutrient rich Peru Margin, and higher expression of motility genes in the Peru Margin samples. Higher expression of genes associated with metals transporters and antibiotic resistance and production was detected in Canterbury Basin sediments. A poly-A focused metatranscriptome produced for the Canterbury Basin sample from 345 mbsf provides further evidence for active fungal communities in the subsurface in the form of fungal-associated transcripts for metabolic and cellular processes, cell and membrane functions, and catalytic activities. Fungal communities at comparable depths at the two geographically separated locations appear dominated by distinct taxa. Differences in taxonomic composition and expression of genes associated with particular metabolic activities may be a function of sediment organic content as well as oceanic province. Microscopic analysis of Canterbury Basin sediment samples from 4 and 403 mbsf produced visualizations of septate fungal filaments, branching fungi, conidiogenesis, and spores. These images provide another important line of evidence supporting the occurrence and activity of fungi in the deep subseafloor biosphere.
  • Article
    Comparison of oyster aquaculture methods and their potential to from coastal ecosystems
    (Frontiers Media, 2021-03-24) Mara, Paraskevi ; Edgcomb, Virginia P. ; Sehein, Taylor R. ; Beaudoin, David J. ; Martinsen, Chuck ; Lovely, Christina ; Belcher, Bridget ; Cox, Rebecca ; Curran, Meghan ; Farnan, Claire ; Giannini, Peter ; Lott, Sarah ; Paquette, Kyle ; Pinckney, Anna ; Schafer, Natalie ; Surgeon-Rogers, Tonna-Marie ; Rogers, Daniel R.
    Coastal ecosystems are impacted by excessive nutrient inputs that cause degradation of water quality and impairments of ecosystem functioning. Regulatory and management efforts to enhance nutrient export from coastal ecosystems include sustainable oyster aquaculture that removes nitrogen in the form of oyster biomass and increases particulate export to underlying sediments where increased organic material may enhance microbial denitrification. To better understand the impacts of oyster aquaculture on nitrogen removal, we examined bacterial processes in sediments underlying three of the most common aquaculture methods that vary in the proximity of oysters to the sediments. Sediment samples underlying sites managed with these different aquaculture methods were examined using the 16S rRNA gene to assess microbial community structure, gene expression analyses to examine nitrogen and sulfur cycling genes, and nitrogen gas flux measurements. All sites were located in the same hydrodynamic setting within Waquoit Bay, MA during 2018 and 2019. Although sediments under the different oyster farming practices showed similar communities, ordination analysis revealed discrete community groups formed along the sampling season. Measured N2 fluxes and expression of key genes involved in denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) increased during mid-summer and into fall in both years primarily under bottom cages. While all three oyster growing methods enhanced nitrogen removal relative to the control site, gene expression data indicate that the nitrogen retaining process of DNRA is particularly enhanced after end of July under bottom cages, and to a lesser extent, under suspended and floating bags. The choice of gear can also potentially increase processes that induce nitrogen retention in the form of ammonia in the underlying sediments over time, thus causing deviations from predicted nitrogen removal. If nitrogen removal is a primary objective, monitoring for these shifts is essential for making decisions about siting and size of aquaculture sites from year to year.
  • Dataset
    Supplemental files from “Metazoans of redoxcline sediments in Mediterranean deep-sea hypersaline anoxic basins” (Bernhard et al., submitted, BMC Biology).
    ( 2015-10-05) Bernhard, Joan M. ; Morrison, Colin R. ; Pape, Ellen ; Beaudoin, David J. ; Todaro, M. Antonio ; Pachiadaki, Maria G. ; Kormas, Konstantinos Ar. ; Edgcomb, Virginia P.
    Link provides access to supplemental tables and figures to our manuscript regarding metazoans of redoxcline sediments in Mediterranean deep-sea hypersaline anoxic basins (DHABs). Specimens shown in supplemental figures are loriciferans collected from control and lower halocline sediments of L'Atalante Basin and Discovery Basin. Further details appear in Bernhard et al. (submitted).
  • Preprint
    Active eukaryotes in microbialites from Highborne Cay, Bahamas, and Hamelin Pool (Shark Bay), Australia
    ( 2013-06-26) Edgcomb, Virginia P. ; Bernhard, Joan M. ; Summons, Roger E. ; Orsi, William D. ; Beaudoin, David J. ; Visscher, Pieter T.
    Microbialites are organosedimentary structures that are formed through the interaction of benthic microbial communities and sediments and include mineral precipitation. These lithifying microbial mat structures include stromatolites and thrombolites. Exuma Sound in the Bahamas, and Hamelin Pool in Shark Bay, Western Australia are two locations where significant stands of modern microbialites exist. Although prokaryotic diversity in these structures is reasonably well documented, little is known about the eukaryotic component of these communities and their potential to influence sedimentary fabrics through grazing, binding and burrowing activities. Accordingly, comparisons of eukaryotic communities in modern stromatolitic and thrombolytic mats can potentially provide insight into the coexistence of both laminated and clotted mat structures in close proximity to one another. Here we examine this possibility by comparing eukaryotic diversity based on Sanger and high-throughput pyrosequencing of small subunit ribosomal RNA (18S rRNA) genes. Analyses were based on total RNA extracts as template to minimize input from inactive or deceased organisms. Results identified diverse eukaryotic communities particularly stramenopiles, Alveolata, Metazoa, Amoebozoa, and Rhizaria within different mat types at both locations, as well as abundant and diverse signatures of eukaryotes with <80% sequence similarity to sequences in GenBank. This suggests presence of significant novel eukaryotic diversity, particularly in hypersaline Hamelin Pool. There was evidence of vertical structuring of protist populations and foraminiferal diversity was highest in bioturbated/clotted thrombolite mats of Highborne Cay.
  • Article
    The genetic diversity of Mesodinium and associated cryptophytes
    (Frontiers Media, 2016-12-20) Johnson, Matthew D. ; Beaudoin, David J. ; Laza-Martinez, Aitor ; Dyhrman, Sonya T. ; Fensin, Elizabeth ; Lin, Senjie ; Merculief, Aaron ; Nagai, Satoshi ; Pompeu, Mayza ; Setala, Outi ; Stoecker, Diane K.
    Ciliates from the genus Mesodinium are globally distributed in marine and freshwater ecosystems and may possess either heterotrophic or mixotrophic nutritional modes. Members of the Mesodinium major/rubrum species complex photosynthesize by sequestering and maintaining organelles from cryptophyte prey, and under certain conditions form periodic or recurrent blooms (= red tides). Here, we present an analysis of the genetic diversity of Mesodinium and cryptophyte populations from 10 environmental samples (eight globally dispersed habitats including five Mesodinium blooms), using group-specific primers for Mesodinium partial 18S, ITS, and partial 28S rRNA genes as well as cryptophyte large subunit RuBisCO genes (rbcL). In addition, 22 new cryptophyte and four new M. rubrum cultures were used to extract DNA and sequence rbcL and 18S-ITS-28S genes, respectively, in order to provide a stronger phylogenetic context for our environmental sequences. Bloom samples were analyzed from coastal Brazil, Chile, two Northeastern locations in the United States, and the Pribilof Islands within the Bering Sea. Additionally, samples were also analyzed from the Baltic and Barents Seas and coastal California under non-bloom conditions. Most blooms were dominated by a single Mesodinium genotype, with coastal Brazil and Chile blooms composed of M. major and the Eastern USA blooms dominated by M. rubrum variant B. Sequences from all four blooms were dominated by Teleaulax amphioxeia-like cryptophytes. Non-bloom communities revealed more diverse assemblages of Mesodinium spp., including heterotrophic species and the mixotrophic Mesodinium chamaeleon. Similarly, cryptophyte diversity was also higher in non-bloom samples. Our results confirm that Mesodinium blooms may be caused by M. major, as well as multiple variants of M. rubrum, and further implicate T. amphioxeia as the key cryptophyte species linked to these phenomena in temperate and subtropical regions.
  • Article
    Two canonically aerobic foraminifera express distinct peroxisomal and mitochondrial metabolisms
    (Frontiers Media, 2022-12-02) Powers, Christopher ; Gomaa, Fatma ; Billings, Elizabeth B. ; Utter, Daniel R. ; Beaudoin, David J. ; Edgcomb, Virginia P. ; Hansel, Colleen M. ; Wankel, Scott D. ; Filipsson, Helena L. ; Zhang, Ying ; Bernhard, Joan M.
    Certain benthic foraminifera thrive in marine sediments with low or undetectable oxygen. Potential survival avenues used by these supposedly aerobic protists include fermentation and anaerobic respiration, although details on their adaptive mechanisms remain elusive. To better understand the metabolic versatility of foraminifera, we studied two benthic species that thrive in oxygen-depleted marine sediments. Here we detail, via transcriptomics and metatranscriptomics, differential gene expression of Nonionella stella and Bolivina argentea , collected from Santa Barbara Basin, California, USA, in response to varied oxygenation and chemical amendments. Organelle-specific metabolic reconstructions revealed these two species utilize adaptable mitochondrial and peroxisomal metabolism. N. stella, most abundant in anoxia and characterized by lack of food vacuoles and abundance of intracellular lipid droplets, was predicted to couple the putative peroxisomal beta-oxidation and glyoxylate cycle with a versatile electron transport system and a partial TCA cycle. In contrast, B. argentea , most abundant in hypoxia and contains food vacuoles, was predicted to utilize the putative peroxisomal gluconeogenesis and a full TCA cycle but lacks the expression of key beta-oxidation and glyoxylate cycle genes. These metabolic adaptations likely confer ecological success while encountering deoxygenation and expand our understanding of metabolic modifications and interactions between mitochondria and peroxisomes in protists.