Shimizu Nobumichi

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 16 of 16
  • Article
    CO2 content beneath northern Iceland and the variability of mantle carbon
    (Geological Society of America, 2017-11-16) Hauri, Erik H. ; Maclennan, John ; McKenzie, Dan ; Gronvold, Karl ; Oskarsson, Niels ; Shimizu, Nobumichi
    Primitive basalt melt inclusions from Borgarhraun, northern Iceland, display large correlated variations in CO2 and nonvolatile incompatible trace elements (ITEs) such as Nb, Th, Rb, and Ba. The average CO2/ITE ratios of the Borgarhraun melt inclusion population are precisely determined (e.g., CO2/Nb = 391 ± 16; 2σM [two standard errors of the mean], n = 161). These data, along with published data on five other populations of undegassed mid-oceanic ridge basalt (MORB) glasses and melt inclusions, demonstrate that upper mantle CO2/Ba and CO2/Rb are nearly homogeneous, while CO2/Nb and CO2/Th are broadly correlated with long-term indices of mantle heterogeneity reflected in Nd isotopes (143Nd/144Nd) in five of the six regions of the upper mantle examined thus far. Our results suggest that heterogeneous carbon contents of the upper mantle are long-lived features, and that average carbon abundances of the mantle sources of Atlantic MORB are higher by a factor of two than those of Pacific MORB. This observation is correlated with a similar distinction in water contents and trace elements characteristic of subduction fluids (Ba, Rb). We suggest that the upper mantle beneath the younger Atlantic Ocean basin contains components of hydrated and carbonated subduction-modified mantle from prior episodes of Iapetus subduction that were entrained and mixed into the upper mantle during opening of the Atlantic Ocean basin.
  • Article
    Crystallization depth beneath an oceanic detachment fault (ODP Hole 923A, Mid-Atlantic Ridge)
    (John Wiley & Sons, 2016-01-21) Lissenberg, C. Johan ; Rioux, Matthew ; MacLeod, Christopher J. ; Bowring, Samuel A. ; Shimizu, Nobumichi
    Oceanic detachment faults are increasingly recognized as playing an integral role in the seafloor spreading process at slow and ultraslow spreading mid-ocean ridges, with significant consequences for the architecture of the oceanic lithosphere. Although melt supply is considered to play a critical control on the formation and evolution of oceanic detachments, much less well understood is how melts and faults interact and influence each other. Few direct constraints on the locus and depth of melt emplacement in the vicinity of detachments are available. Gabbros drilled in ODP Hole 923A near the intersection of the Mid-Atlantic Ridge and the Kane transform fault (23°N; the MARK area) represent magmas emplaced into the footwall of such a detachment fault and unroofed by it. We here present U-Pb zircon dates for these gabbros and associated diorite veins which, when combined with a tectonic reconstruction of the area, allow us to calculate the depths at which the melts crystallized. Th-corrected single zircon U-Pb dates from three samples range from 1.138 ± 0.062 to 1.213 ± 0.021 Ma. We find a crystallization depth of 6.4 +1.7/−1.3 km, and estimate that the melts parental to the gabbros were initially emplaced up to 1.5 km deeper, at <8 km below the seafloor. The tectonic reconstruction implies that the detachment fault responsible for the exposure of the sampled sequence likely crossed the ridge axis at depth, suggesting that melt emplacement into the footwall of oceanic detachment faults is an important process. The deep emplacement depth we find associated with “detachment mode” spreading at ∼1.2 Ma appears to be significantly greater than the depth of magma reservoirs during the current “magmatic mode” of spreading in the area, suggesting that the northern MARK segment preserves a recent switch between two temporally distinct modes of spreading with fundamentally different lithospheric architecture.
  • Article
    Big-picture geochemistry from microanalyses - my four-decade odyssey in sims
    (European Association of Geochemistry, 2019-04) Shimizu, Nobumichi
    Secondary Ion Mass Spectrometry (SIMS) is now a well established analytical technique in geochemistry. Its developmental history goes back to the 1970s. Here, I tell the story of how I got involved in its applications to geochemistry in 1974 at the Institut de Physique du Globe in Paris (IPGP) with the Cameca IMS 300 instrument and my ensuing struggles with theories of secondary ion formation processes and the eventual development of the energy filtering approach as an effective method for suppressing molecular ion interferences in silicate minerals and glasses. The geochemical applications of the techniques that I developed with my colleagues at IPGP, Massachusetts Institute of Technology (MIT), and Woods Hole Oceanographic Institution (WHOI) are summarised in four different categories: (1) trace element zoning of phenocrysts and the kinetics of magmatic crystallisation processes, (2) trace element abundance patterns and geochemical processes in the mantle, (3) use of trace element abundances in magmatic processes in the mid-ocean ridge system, and (4) use of Sr/Ca ratios in biogenic carbonates in palaeoceanographic studies. Trace element zoning patterns observed in phenocrysts reveal that crystal growth in magmas can occur with non-equilibrium partitioning of trace elements at the crystal-melt interface. Trace element zoning patterns in augite phenocrysts from Gough Island also indicate repeated drastic changes in magma composition, suggesting a turbulent dynamic state of magma bodies beneath eruptive centres. Chondrite normalised rare earth element (REE) patterns measured in clinopyroxenes from mantle rocks (peridotites from the Horoman massif and xenoliths in basalts from both oceanic and continental localities) show strong evidence for melt-rock reactions, indicating that lithospheric peridotites depleted in incompatible elements by melt extraction often show evidence of having been subsequently enriched in these elements through melt-rock reaction. The distribution of Sr in garnet inclusions in peridotitic diamonds from South Africa and Siberia is highly heterogeneous over wide concentration ranges, suggesting growth of inclusion garnets as well as formation of these diamonds, occurred shortly before the diamonds were carried to the surface by kimberlite eruptions. Rare earth element and other trace element abundance patterns measured in clinopyroxenes in abyssal peridotites clearly indicate that melting and melt extraction processes beneath mid-ocean ridges is akin to fractional melting by which small degree melt fractions are progressively extracted from residues as the mantle decompresses and only later mixed, sometimes incompletely, to form mid-ocean ridge basalt lavas erupted on the ocean floor. However, meltrock reactions between residual peridotites and upwelling melt fractions could significantly alter trace element abundance patterns of originally residual clinopyroxenes. In situ analyses reveal very large trace element variations occurring on intra-mineral scales, suggesting that precipitation of clinopyroxene also occurred during melt-rock reactions. It is evident that abyssal peridotites contain complex geochemical histories beyond melt extraction via fractional melting. Sr/Ca variations in coral skeletons (aragonite) reveal strong effects of photosynthesis of symbiont algae in day time growth zones, while those in night time growth zones near centres of calcification record variations of sea surface temperatures (SST) in Porites lutea. In Astrangia poculata, which experience a large temperature range (-2 – 23 °C), non-symbiotic skeletons faithfully record temperature variations, while symbiotic skeletons display ontogenic effects of algal symbionts. Sr/Ca variations in coccolithophores across the Paleocene-Eocene Thermal Maximum (PETM) display different responses of individual species to the sudden greenhouse environment, and the severity of the response also is dependent on the oceanographic conditions of their habitats.
  • Article
    Oxidising agents in sub-arc mantle melts link slab devolatilisation and arc magmas
    (Nature Publishing Group, 2018-08-29) Bénard, Antoine ; Klimm, Kevin ; Woodland, Alan B. ; Arculus, Richard J. ; Wilke, Max ; Botcharnikov, Roman ; Shimizu, Nobumichi ; Nebel, Oliver ; Rivard, Camille ; Ionov, Dmitri A.
    Subduction zone magmas are more oxidised on eruption than those at mid-ocean ridges. This is attributed either to oxidising components, derived from subducted lithosphere (slab) and added to the mantle wedge, or to oxidation processes occurring during magma ascent via differentiation. Here we provide direct evidence for contributions of oxidising slab agents to melts trapped in the sub-arc mantle. Measurements of sulfur (S) valence state in sub-arc mantle peridotites identify sulfate, both as crystalline anhydrite (CaSO4) and dissolved SO42− in spinel-hosted glass (formerly melt) inclusions. Copper-rich sulfide precipitates in the inclusions and increased Fe3+/∑Fe in spinel record a S6+–Fe2+ redox coupling during melt percolation through the sub-arc mantle. Sulfate-rich glass inclusions exhibit high U/Th, Pb/Ce, Sr/Nd and δ34S (+ 7 to + 11‰), indicating the involvement of dehydration products of serpentinised slab rocks in their parental melt sources. These observations provide a link between liberated slab components and oxidised arc magmas.
  • Preprint
    C–O–H–S fluids and granitic magma : how S partitions and modifies CO2 concentrations of fluid-saturated felsic melt at 200 MPa
    ( 2011-03-10) Webster, James D. ; Goldoff, B. ; Shimizu, Nobumichi
    Hydrothermal volatile-solubility and partitioning experiments were conducted with fluid-saturated haplogranitic melt, H2O, CO2, and S in an internally heated pressure vessel at 900°C and 200 MPa; three additional experiments were conducted with iron-bearing melt. The run-product glasses were analyzed by electron microprobe, FTIR, and SIMS; and they contain ≤ 0.12 wt% S, ≤ 0.097 wt.% CO2, and ≤ 6.4 wt.% H2O. Apparent values of log ƒO2 for the experiments at run conditions were computed from the [(S6+)/(S6++S2-)] ratio of the glasses, and they range from NNO-0.4 to NNO+1.4. The C-O-H-S fluid compositions at run conditions were computed by mass balance, and they contained 22-99 mol% H2O, 0-78 mol% CO2, 0-12 mol% S, and < 3 wt% alkalis. Eight S-free experiments were conducted to determine the H2O and CO2 concentrations of melt and fluid compositions and to compare them with prior experimental results for C-O-H fluid-saturated rhyolite melt, and the agreement is excellent. Sulfur partitions very strongly in favor of fluid in all experiments, and the presence of S modifies the fluid compositions, and hence, the CO2 solubilities in coexisting felsic melt. The square of the mole fraction of H2O in melt increases in a linear fashion, from 0.05-0.25, with the H2O concentration of the fluid. The mole fraction of CO2 in melt increases linearly, from 0.0003-0.0045, with the CO2 concentration of C-O-H-S fluids. Interestingly, the CO2 concentration in melts, involving relatively reduced runs (log ƒO2 ≤ NNO+0.3) that contain 2.5-7 mol% S in the fluid, decreases significantly with increasing S in the system. This response to the changing fluid composition causes the H2O and CO2 solubility curve for C-O-H-S fluid-saturated haplogranitic melts at 200 MPa to shift to values near that modeled for C-O-H fluid-saturated, S-free rhyolite melt at 150 MPa. The concentration of S in haplogranitic melt increases in a linear fashion with increasing S in C-O-H-S fluids, but these data show significant dispersion that likely reflects the strong influence of ƒO2 on S speciation in melt and fluid. Importantly, the partitioning of S between fluid and melt does not vary with the (H2O/H2O+CO2) ratio of the fluid. The fluid-melt partition coefficients for H2O, CO2, and S and the atomic (C/S) ratios of the run-product fluids are virtually identical to thermodynamic constraints on volatile partitioning and the H, S, and C contents of pre-eruptive magmatic fluids and volcanic gases for subduction-related magmatic systems thus confirming our experiments are relevant to natural eruptive systems.
  • Article
    B content and Si/C ratios from cultured diatoms (Thalassiosira pseudonana and Thalassiosira weissflogii) : relationship to seawater pH and diatom carbon acquisition
    (Elsevier, 2013-06-18) Mejia, Luz Maria ; Isensee, Kirsten ; Mendez-Vicente, Ana ; Pisonero, Jorge ; Shimizu, Nobumichi ; Gonzalez, Cristina ; Monteleone, Brian D. ; Stoll, Heather M.
    Despite the importance of diatoms in regulating climate and the existence of large opal-containing sediments in key air-ocean exchange areas, most geochemical proxy records are based on carbonates. Among them, Boron (B) content and isotopic composition have been widely used to reconstruct pH from foraminifera and coral fossils. We assessed the possibility of a pH/CO2 seawater concentration control on B content in diatom opal to determine whether or not frustule B concentrations could be used as a pH proxy or to clarify algae physiological responses to acidifying pH. We cultured two well-studied diatom species, Thalassiosira pseudonana and Thalassiosira weissflogii at varying pH conditions and determined Si and C quotas. Frustule B content was measured by both laser-ablation inductively coupled mass spectrometry (LA-ICPMS) and secondary ion mass spectrometry (SIMS/ion probe). For both species, frustules grown at higher pH have higher B contents and higher Si requirements per fixed C. If this trend is representative of diatom silicification in a future more acidic ocean, it could contribute to changes in the efficiency of diatom ballasting and C export, as well as changes in the contribution of diatoms relative to other phytoplankton groups in Si-limited regions. If B enters the cell through the same transporter employed for HCO3− uptake, an increased HCO3− requirement with decreasing CO2 concentrations (higher pH), and higher B(OH)4/HCO3− ratios would explain the observed increase in frustule B content with increasing pH. The mechanism of B transport from the site of uptake to the site of silica deposition is unknown, but may occur via silicon transport vesicles, in which B(OH)4− may be imported for B detoxification and/or as part of a pH regulation strategy either though Na-dependent B(OH)4−/Cl− antiport or B(OH)4−/H+ antiport. B deposition in the silica matrix may occur via substitution of a B(OH)4− for a negatively charged SiO− formed during silicification. With the current analytical precision, B content of frustules is unlikely to resolve ocean pH with a precision of paleoceanographic interest. However, if frustule B content was controlled mainly by HCO3− uptake for photosynthesis, which appears to show a threshold behavior, then measurements of B content might reveal the varying importance of active HCO3− acquisition mechanisms of diatoms in the past.
  • Preprint
    Protracted timescales of lower crustal growth at the fast-spreading East Pacific Rise
    ( 2011-12) Rioux, Matthew ; Lissenberg, C. Johan ; McLean, Noah M. ; Bowring, Samuel A. ; MacLeod, Christopher J. ; Hellebrand, Eric ; Shimizu, Nobumichi
    Formation of the oceanic crust at mid-ocean ridges is a fundamental component of plate tectonics. A majority of the crust at many ridges is composed of plutonic rocks that form by crystallization of mantle-derived magmas within the crust. Recent application of U/Pb dating to samples from in-situ oceanic crust has begun to provide exciting new insight into the timing, duration and distribution of magmatism during formation of the plutonic crust1-4. Previous studies have focused on samples from slow-spreading ridges, however, the time scales and processes of crustal growth are expected to vary with plate spreading rate. Here we present the first high-precision dates from plutonic crust formed at the fast-spreading East Pacific Rise (EPR). Individual zircon minerals yielded dates from 1.420–1.271 million years ago, with uncertainties of ± 0.006–0.081 million years. Within individual samples, zircons record a range of dates of up to ~0.124 million years, consistent with protracted crystallization or assimilation of older zircons from adjacent rocks. The variability in dates is comparable to data from the Vema lithospheric section on the Mid-Atlantic Ridge (MAR)3, suggesting that time scales of magmatic processes in the lower crust may be similar at slow- and fast-spreading ridges.
  • Article
    Exploring B/Ca as a pH proxy in bivalves : relationships between Mytilus californianus B/Ca and environmental data from the northeast Pacific
    (Copernicus Publications on behalf of the European Geosciences Union, 2011-09-13) McCoy, S. J. ; Robinson, Laura F. ; Pfister, Catherine A. ; Wootton, J. T. ; Shimizu, Nobumichi
    A distinct gap in our ability to understand changes in coastal biology that may be associated with recent ocean acidification is the paucity of directly measured ocean environmental parameters at coastal sites in recent decades. Thus, many researchers have turned to sclerochronological reconstructions of water chemistry to document the historical seawater environment. In this study, we explore the relationships between B/Ca and pH to test the feasibility of B/Ca measured on the ion probe as a pH proxy in the California mussel, Mytilus californianus. Heterogeneity in a range of ion microprobe standards is assessed, leading to reproducible B/Ca ratios at the 5% level. The B/Ca data exhibit large excursions during winter months, which are particularly pronounced during the severe winters of 2004–2005 and 2005–2006. Furthermore, B/Ca ratios are offset in different parts of the skeleton that calcified at the same time. We compare the M. californianus B/Ca record to directly measured environmental data during mussel growth from the period of 1999–2009 to examine whether seawater chemistry or temperature plays a role in controlling shell B/Ca. A suite of growth rate models based on measured temperature are compared to the B/Ca data to optimise the potential fit of B/Ca to pH. Despite sampling conditions that were well-suited to testing a pH control on B/Ca, including a close proximity to an environmental record, a distinct change in pH at the sampling locale, and a growth model designed to optimise the correlations between seawater pH and shell B/Ca, we do not see a strong correlations between pH and shell B/Ca (maximum coefficient of determination, r2, of 0.207). Instead, our data indicate a strong biological control on B/Ca as observed in some other carbonate-forming organisms.
  • Article
    Productivity response of calcareous nannoplankton to Eocene Thermal Maximum 2 (ETM2)
    (Copernicus Publications on behalf of the European Geosciences Union, 2012-05-31) Dedert, M. ; Stoll, Heather M. ; Kroon, Dick ; Shimizu, Nobumichi ; Kanamaru, K. ; Ziveri, Patrizia
    The Early Eocene Thermal Maximum 2 (ETM2) at ~53.7 Ma is one of multiple hyperthermal events that followed the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma). The negative carbon excursion and deep ocean carbonate dissolution which occurred during the event imply that a substantial amount (103 Gt) of carbon (C) was added to the ocean-atmosphere system, consequently increasing atmospheric CO2(pCO2). This makes the event relevant to the current scenario of anthropogenic CO2 additions and global change. Resulting changes in ocean stratification and pH, as well as changes in exogenic cycles which supply nutrients to the ocean, may have affected the productivity of marine phytoplankton, especially calcifying phytoplankton. Changes in productivity, in turn, may affect the rate of sequestration of excess CO2 in the deep ocean and sediments. In order to reconstruct the productivity response by calcareous nannoplankton to ETM2 in the South Atlantic (Site 1265) and North Pacific (Site 1209), we employ the coccolith Sr/Ca productivity proxy with analysis of well-preserved picked monogeneric populations by ion probe supplemented by analysis of various size fractions of nannofossil sediments by ICP-AES. The former technique of measuring Sr/Ca in selected nannofossil populations using the ion probe circumvents possible contamination with secondary calcite. Avoiding such contamination is important for an accurate interpretation of the nannoplankton productivity record, since diagenetic processes can bias the productivity signal, as we demonstrate for Sr/Ca measurements in the fine (<20 μm) and other size fractions obtained from bulk sediments from Site 1265. At this site, the paleoproductivity signal as reconstructed from the Sr/Ca appears to be governed by cyclic changes, possibly orbital forcing, resulting in a 20–30% variability in Sr/Ca in dominant genera as obtained by ion probe. The ~13 to 21% increase in Sr/Ca above the cyclic background conditions as measured by ion probe in dominating genera may result from a slightly elevated productivity during ETM2. This high productivity phase is probably the result of enhanced nutrient supply either from land or from upwelling. The ion probe results show that calcareous nannoplankton productivity was not reduced by environmental conditions accompanying ETM2 at Site 1265, but imply an overall sustained productivity and potentially a small productivity increase during the extreme climatic conditions of ETM2 in this portion of the South Atlantic. However, in the open oceanic setting of Site 1209, a significant decrease in dominant genera Sr/Ca is observed, indicating reduced productivity.
  • Preprint
    Sulfur isotope fractionation between fluid and andesitic melt : an experimental study
    ( 2014-07) Fiege, Adrian ; Holtz, Francois ; Shimizu, Nobumichi ; Mandeville, Charles W. ; Behrens, Harald ; Knipping, Jaayke L.
    Glasses produced from decompression experiments conducted by Fiege et al. (2014a) were used to investigate the fractionation of sulfur isotopes between fluid and andesitic melt upon magma degassing. Starting materials were synthetic glasses with a composition close to a Krakatau dacitic andesite. The glasses contained 4.55 to 7.95 wt% H2O, ~140 to 2700 ppm sulfur (S), and 0 to 1000 ppm chlorine (Cl). The experiments were carried out in internally heated pressure vessels (IHPV) at 1030°C and oxygen fugacities (fO2) ranging from QFM+0.8 log units up to QFM+4.2 log units (QFM: quartz-fayalite-magnetite buffer). The decompression experiments were conducted by releasing pressure (P) continuously from ~400 MPa to final P of 150, 100, 70 and 30 MPa. The decompression rate (r) ranged from 0.01 to 0.17 MPa/s. The samples were annealed for 0 to 72 h (annealing time, tA) at the final P and quenched rapidly from 1030°C to room temperature (T). The decompression led to the formation of a S-bearing aqueous fluid phase due to the relatively large fluid-melt partitioning coefficients of S. Secondary ion mass spectrometry (SIMS) was used to determine the isotopic composition of the glasses before and after decompression. Mass balance calculations were applied to estimate the gas-melt S isotope fractionation factor αg-m. No detectable effect of r and tA on αg-m was observed. However, SIMS data revealed a remarkable increase of αg-m from ~0.9985 ± 0.0007 at >QFM+3 to ~1.0042 ± 0.0042 at ~QFM+1. Noteworthy, the isotopic fractionation at reducing conditions was about an order of magnitude larger than predicted by previous works. Based on our experimental results and on previous findings for S speciation in fluid and silicate melt a new model predicting the effect of fO2 on αg-m (or Δ34S g-m) in andesitic systems at 1030°C is proposed. Our experimental results as well as our modeling are of high importance for the interpretation of S isotope signatures in natural samples (e.g., melt inclusions or volcanic gases).
  • Preprint
    Explosive eruptions at mid-ocean ridges driven by CO2-rich magmas
    ( 2011-02) Helo, Christoph ; Longpre, Marc-Antoine ; Shimizu, Nobumichi ; Clague, David A. ; Stix, John
    The abundance of volatile compounds, and particularly 18 CO2, in the upper oceanic mantle affects the style of volcanic eruptions. At mid-ocean ridges, eruptions are generally dominated by the gentle effusion of basaltic lavas with a low volatile content. But, explosive volcanism has been documented at some ocean spreading centres1-3, indicative of abundant volatile compounds. Estimates of the initial CO2 concentration of primary magmas can be used to constrain the CO2 content of the upper oceanic mantle, but these estimates vary greatly4,5. Here we present ion microprobe measurements of the CO2 content of basaltic melt trapped in plagioclase crystals. The crystals are derived from volcanic ash deposits erupted explosively at Axial Seamount, Juan de Fuca Ridge, in the northeast Pacific Ocean. We report unusually high CO2 concentrations of up to 9,160 ppm, which indicate that the upper oceanic mantle is more enriched in carbon than previously thought. And we furthermore suggest that CO2 fluxes along mid-ocean ridges4,5 vary significantly. Our results demonstrate that elevated fluxes of CO2 from the upper oceanic mantle can drive explosive eruptions at mid-ocean ridges.
  • Article
    Volatile (F and Cl) concentrations in Iwate olivine-hosted melt inclusions indicating low-temperature subduction
    (Springer, 2014-08-01) Rose-Koga, Estelle F. ; Koga, Kenneth T. ; Hamada, Morihisa ; Helouis, Thomas ; Whitehouse, Martin J. ; Shimizu, Nobumichi
    Investigation of olivine-hosted melt inclusions provides information about the abundance of volatile elements that are often lost during subaerial eruptions of lavas. We have measured the abundances of H2O, CO2, F, Cl, and S as well as Pb isotopes in 29 melt inclusions in the scoria of the 1686 eruption of the Iwate volcano, a frontal-arc volcano in the northeast Japan arc. Pb Isotope compositions identify that Iwate magma is derived from a mixture of depleted mantle, subducted basalt, and sediment. Systematics of F in comparison to MORB and other arc magma indicates that (1) the slab surface temperature must be among the lowest on Earth and (2) hydrous minerals, such as amphibole, humites, and/or mica, must be present as residual phases during the dehydration of the slab.
  • Article
    Chalcophile behavior of thallium during MORB melting and implications for the sulfur content of the mantle
    (John Wiley & Sons, 2014-12-18) Nielsen, Sune G. ; Shimizu, Nobumichi ; Lee, Cin-Ty A. ; Behn, Mark D.
    We present new laser ablation ICP-MS trace element concentration data for 28 elements in 97 mid-ocean ridge basalt (MORB) glasses that cover all major spreading centers as well as Tl concentration data for all mineral phases in five lherzolites from the Lherz massif, France. The ratio between the elements thallium (Tl) and cerium (Ce) is nearly constant in MORB, providing evidence that the depleted MORB mantle (DMM) has uniform Ce/Tl. Lherzolite mineral data reveal that sulfides are heterogeneous and contain between 23 and 430 ng/g of Tl while all other minerals contain Tl below the analytical detection limit of ∼1 ng/g. We argue that Tl in MORB is controlled by residual sulfide during mantle melting. To investigate the observed relationship between Tl and Ce, we conduct models of fractional mantle melting, which show that the constant Ce/Tl in MORB is only reproduced if the ratio between clinopyroxene and sulfide in the upper mantle varies by less than 10%. In addition, the rate of melting for these two phases must be nearly identical as otherwise melt depletion and refertilization processes would lead to Ce/Tl fractionation. These model results allow us to establish a relationship for the sulfur content of DMM: [S]DMM = SCSS × Mcpx /Rcpx, where SCSS is the sulfur concentration of a silicate melt at sulfide saturation, Rcpx is the melt reaction coefficient, and Mcpx is the modal abundance of clinopyroxene in the DMM. Using this equation, we calculate that the average upper mantle sulfur concentration is 195 ± 45 μg/g.
  • Preprint
    The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle
    ( 2017-03-17) Marschall, Horst R. ; Wanless, V. Dorsey ; Shimizu, Nobumichi ; Pogge von Strandmann, Philip ; Elliott, Tim ; Monteleone, Brian D.
    A global selection of 56 mid-ocean ridge basalt (MORB) glasses were analysed for Li and B abundances and isotopic compositions. Analytical accuracy and precision of analyses constitute an improvement over previously published MORB data and allow a more detailed discussion of the Li and B systematics of the crust-mantle system. Refined estimates for primitive mantle abundances ([Li]=1.39±0.10[Li]=1.39±0.10 μg/g and [B]=0.19±0.02[B]=0.19±0.02 μg/g) and depleted mantle abundances ([Li]=1.20±0.10[Li]=1.20±0.10 μg/g and [B]=0.077±0.010[B]=0.077±0.010 μg/g) are presented based on mass balance and on partial melting models that utilise observed element ratios in MORB. Assimilation of seawater (or brine) or seawater-altered material beneath the ridge, identified by high Cl/KCl/K, causes significant elevation of MORB δ11Bδ11B and variable elevation in δ7Liδ7Li. The B isotope ratio is, hence, identified as a reliable indicator of assimilation in MORB and values higher than −6‰ are strongly indicative of shallow contamination of the magma. The global set of samples investigated here were produced at various degrees of partial melting and include depleted and enriched MORB from slow and fast-spreading ridge segments with a range of radiogenic isotope signatures and trace element compositions. Uncontaminated (low-Cl/KCl/K) MORB show no significant boron isotope variation at the current level of analytical precision, and hence a homogenous B isotopic composition of δ11B=-7.1±0.9‰δ11B=-7.1±0.9‰ (mean of six ridge segments; 2SD). Boron isotope fractionation during mantle melting and basalt fractionation likely is small, and this δ11Bδ11B value reflects the B isotopic composition of the depleted mantle and the bulk silicate Earth, probably within ±0.4‰. Our sample set shows a mean δ7Li=+3.5±1.0‰δ7Li=+3.5±1.0‰ (mean of five ridge segments; 2SD), excluding high-Cl/KCl/K samples. A significant variation of 1.0–1.5‰ exists among various ridge segments and among samples within individual ridge segments, but this variation is unrelated to differentiation, assimilation or mantle source indicators, such as radiogenic isotopes or trace elements. It, therefore, seems likely that kinetic fractionation of Li isotopes during magma extraction, transport and storage may generate δ7Liδ7Li excursions in MORB. No mantle heterogeneities, such as those generated by deeply recycled subducted materials, are invoked in the interpretation of the Li and B isotope data presented here, in contrast to previous work on smaller data sets. Lithium and boron budgets for the silicate Earth are presented that are based on isotope and element mass balance. A refined estimate for the B isotopic composition of the bulk continental crust is given as δ11B=-9.1±2.4‰δ11B=-9.1±2.4‰. Mass balance allows the existence of recycled B reservoirs in the deep mantle, but these are not required. However, mass balance among the crust, sediments and seawater shows enrichment of 6Li6Li in the surface reservoirs, which requires the existence of 7Li7Li-enriched material in the mantle. This may have formed by the subduction of altered oceanic crust since the Archaean.
  • Article
    Volatile cycling of H2O, CO2, F, and Cl in the HIMU mantle : a new window provided by melt inclusions from oceanic hot spot lavas at Mangaia, Cook Islands
    (John Wiley & Sons, 2014-11-28) Cabral, Rita A. ; Jackson, Matthew G. ; Koga, Kenneth T. ; Rose-Koga, Estelle F. ; Hauri, Erik H. ; Whitehouse, Martin J. ; Price, Allison A. ; Day, James M. D. ; Shimizu, Nobumichi ; Kelley, Katherine A.
    Mangaia hosts the most radiogenic Pb-isotopic compositions observed in ocean island basalts and represents the HIMU (high µ = 238U/204Pb) mantle end-member, thought to result from recycled oceanic crust. Complete geochemical characterization of the HIMU mantle end-member has been inhibited due to a lack of deep submarine glass samples from HIMU localities. We homogenized olivine-hosted melt inclusions separated from Mangaia lavas and the resulting glassy inclusions made possible the first volatile abundances to be obtained from the HIMU mantle end-member. We also report major and trace element abundances and Pb-isotopic ratios on the inclusions, which have HIMU isotopic fingerprints. We evaluate the samples for processes that could modify the volatile and trace element abundances postmantle melting, including diffusive Fe and H2O loss, degassing, and assimilation. H2O/Ce ratios vary from 119 to 245 in the most pristine Mangaia inclusions; excluding an inclusion that shows evidence for assimilation, the primary magmatic H2O/Ce ratios vary up to ∼200, and are consistent with significant dehydration of oceanic crust during subduction and long-term storage in the mantle. CO2 concentrations range up to 2346 ppm CO2 in the inclusions. Relatively high CO2 in the inclusions, combined with previous observations of carbonate blebs in other Mangaia melt inclusions, highlight the importance of CO2 for the generation of the HIMU mantle. F/Nd ratios in the inclusions (30 ± 9; 2σ standard deviation) are higher than the canonical ratio observed in oceanic lavas, and Cl/K ratios (0.079 ± 0.028) fall in the range of pristine mantle (0.02–0.08).
  • Preprint
    Effect of fluorine on near-liquidus phase equilibria of an Fe–Mg rich basalt
    ( 2012-03-26) Filiberto, Justin ; Wood, Justin ; Dasgupta, Rajdeep ; Shimizu, Nobumichi ; Le, Loan ; Treiman, Allan H.
    Volatile species (H2O, CO2, F, Cl, etc) have important effects on the formation and crystallization history of basaltic magmas. Here, we have experimentally investigated the effects of F on phase equilibria of Fe-Mg-rich basalt. Our results show that fluorine has large effects on the liquidus temperature and the chemistry of crystallizing minerals. Compared to the F-free system, addition of ~2 wt.% F moves the olivine-pigeonite liquidus point down ~2 kbar and 95 °C (from 12 kbar, 1375 °C to 10 kbar, 1280 °C). With increasing fluorine concentrations, dramatically increases for both pyroxene and olivine, suggesting that fluorine in basaltic magmas complexes primarily with MgO. Complexing with MgO in the melt decreases its MgO activity, and forces the crystallizing minerals to greater Fe/Mg, and so increases . Models of basalt generation, where the magma is fluorine-rich, need to include the effect of not only water but fluorine on liquidus depression and minerals crystallizing/melting. Our results suggest that fluorine may significantly aid in the petrogenesis of silica-poor, alkali-rich magmas in the Earth and Mars.