Ridgwell Andy

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 3 of 3
  • Article
    Comment on “Modern-age buildup of CO2 and its effects on seawater acidity and salinity” by Hugo A. Loáiciga
    (American Geophysical Union, 2007-09-25) Caldeira, Ken ; Archer, David ; Barry, James P. ; Bellerby, Richard G. J. ; Brewer, Peter G. ; Cao, Long ; Dickson, Andrew G. ; Doney, Scott C. ; Elderfield, Henry ; Fabry, Victoria J. ; Feely, Richard A. ; Gattuso, Jean-Pierre ; Haugan, Peter M. ; Hoegh-Guldberg, Ove ; Jain, Atul K. ; Kleypas, Joan A. ; Langdon, Chris ; Orr, James C. ; Ridgwell, Andy ; Sabine, Christopher L. ; Seibel, Brad A. ; Shirayama, Yoshihisa ; Turley, Carol ; Watson, Andrew J. ; Zeebe, Richard E.
  • Article
    Upper ocean oxygenation dynamics from I/Ca ratios during the Cenomanian-Turonian OAE 2
    (John Wiley & Sons, 2015-05-13) Zhou, Xiaoli ; Jenkyns, Hugh C. ; Owens, Jeremy D. ; Junium, Christopher K. ; Zheng, Xin-Yuan ; Sageman, Bradley B. ; Hardisty, Dalton S. ; Lyons, Timothy W. ; Ridgwell, Andy ; Lu, Zunli
    Global warming lowers the solubility of gases in the ocean and drives an enhanced hydrological cycle with increased nutrient loads delivered to the oceans, leading to increases in organic production, the degradation of which causes a further decrease in dissolved oxygen. In extreme cases in the geological past, this trajectory has led to catastrophic marine oxygen depletion during the so-called oceanic anoxic events (OAEs). How the water column oscillated between generally oxic conditions and local/global anoxia remains a challenging question, exacerbated by a lack of sensitive redox proxies, especially for the suboxic window. To address this problem, we use bulk carbonate I/Ca to reconstruct subtle redox changes in the upper ocean water column at seven sites recording the Cretaceous OAE 2. In general, I/Ca ratios were relatively low preceding and during the OAE interval, indicating deep suboxic or anoxic waters exchanging directly with near-surface waters. However, individual sites display a wide range of initial values and excursions in I/Ca through the OAE interval, reflecting the importance of local controls and suggesting a high spatial variability in redox state. Both I/Ca and an Earth System Model suggest that the northeast proto-Atlantic had notably higher oxygen levels in the upper water column than the rest of the North Atlantic, indicating that anoxia was not global during OAE 2 and that important regional differences in redox conditions existed. A lack of correlation with calcium, lithium, and carbon isotope records suggests that neither enhanced global weathering nor carbon burial was a dominant control on the I/Ca proxy during OAE 2.
  • Article
    Historical and idealized climate model experiments : an intercomparison of Earth system models of intermediate complexity
    (Copernicus Publications on behalf of the European Geosciences Union, 2013-05-16) Eby, Michael ; Weaver, Andrew J. ; Alexander, K. ; Zickfeld, K. ; Abe-Ouchi, A. ; Cimatoribus, A. A. ; Crespin, E. ; Drijfhout, Sybren ; Edwards, N. R. ; Eliseev, A. V. ; Feulner, G. ; Fichefet, T. ; Forest, Chris E. ; Goosse, H. ; Holden, P. B. ; Joos, Fortunat ; Kawamiya, M. ; Kicklighter, David W. ; Kienert, H. ; Matsumoto, K. ; Mokhov, I. I. ; Monier, Erwan ; Olsen, Steffen M. ; Pedersen, J. O. P. ; Perrette, M. ; Philippon-Berthier, G. ; Ridgwell, Andy ; Schlosser, A. ; Schneider von Deimling, T. ; Shaffer, G. ; Smith, R. S. ; Spahni, R. ; Sokolov, Andrei P. ; Steinacher, M. ; Tachiiri, K. ; Tokos, K. ; Yoshimori, M. ; Zeng, Ning ; Zhao, F.
    Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.