Tang
Tingting
Tang
Tingting
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleDecadal assessment of sperm whale site-specific abundance trends in the northern Gulf of Mexico using passive acoustic data(MDPI, 2021-04-22) Li, Kun ; Sidorovskaia, Natalia ; Guilment, Thomas ; Tang, Tingting ; Tiemann, Christopher O.Passive acoustic monitoring has been successfully used to study deep-diving marine mammal populations. To assess regional population trends of sperm whales in the northern Gulf of Mexico (GoM), including impacts of the Deepwater Horizon platform oil spill in 2010, the Littoral Acoustic Demonstration Center-Gulf Ecological Monitoring and Modeling (LADC-GEMM) consortium collected broadband acoustic data in the Mississippi Valley/Canyon area between 2007 and 2017 using bottom-anchored moorings. These data allow the inference of short-term and long-term variations in site-specific abundances of sperm whales derived from their acoustic activity. A comparison is made between the abundances of sperm whales at specific sites in different years before and after the oil spill by estimating the regional abundance density. The results show that sperm whales were present in the region throughout the entire monitoring period. A habitat preference shift was observed for sperm whales after the 2010 oil spill with higher activities at sites farther away from the spill site. A comparison of the 2007 and 2015 results shows that the overall regional abundance of sperm whales did not recover to pre-spill levels. The results indicate that long-term spatially distributed acoustic monitoring is critical in characterizing sperm whale population changes and in understanding how environmental stressors impact regional abundances and the habitat use of sperm whales.
-
ArticleAnalysis of lethal and sublethal impacts of environmental disasters on sperm whales using stochastic modeling(Springer, 2017-05-12) Ackleh, Azmy ; Chiquet, Ross A. ; Ma, Baoling ; Tang, Tingting ; Caswell, Hal ; Veprauskas, Amy ; Sidorovskaia, NataliaMathematical models are essential for combining data from multiple sources to quantify population endpoints. This is especially true for species, such as marine mammals, for which data on vital rates are difficult to obtain. Since the effects of an environmental disaster are not fixed, we develop time-varying (nonautonomous) matrix population models that account for the eventual recovery of the environment to the pre-disaster state. We use these models to investigate how lethal and sublethal impacts (in the form of reductions in the survival and fecundity, respectively) affect the population’s recovery process. We explore two scenarios of the environmental recovery process and include the effect of demographic stochasticity. Our results provide insights into the relationship between the magnitude of the disaster, the duration of the disaster, and the probability that the population recovers to pre-disaster levels or a biologically relevant threshold level. To illustrate this modeling methodology, we provide an application to a sperm whale population. This application was motivated by the 2010 Deepwater Horizon oil rig explosion in the Gulf of Mexico that has impacted a wide variety of species populations including oysters, fish, corals, and whales.