Au Doris W. T.

No Thumbnail Available
Last Name
Au
First Name
Doris W. T.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Preprint
    Effects of nutrients, salinity, pH and light:dark cycle on the production of reactive oxygen species in the alga Chattonella marina
    ( 2007-06-03) Liu, Wenhua ; Au, Doris W. T. ; Anderson, Donald M. ; Lam, Paul K. S. ; Wu, Rudolf S. S.
    Experiments were carried out to investigate the effects of nutrients, salinity, pH and light:dark cycle on growth rate and production of reactive oxygen species (ROS) by Chattonella marina, a harmful algal bloom (HAB) species that often causes fish kills. Different nitrogen forms (organic-N and inorganic-N), N:P ratios, light:dark cycles and salinity significantly influenced algal growth, but not ROS production. However, iron concentration and pH significantly affected both growth and ROS production in C. marina. KCN (an inhibitor of mitochondrial respiration) and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (an inhibitor of photosynthesis) had no significant effects on ROS production. Vitamin K3 (a plasma membrane electron shuttle) enhanced ROS production while its antagonist, dicumarol, decreased ROS production. Taken together, our results suggest that ROS production by C. marina is related to a plasma membrane enzyme system regulated by iron availability but is independent of growth, photosynthesis, availability of macronutrients, salinity and irradiance.
  • Preprint
    Hydrogen peroxide is not the cause of fish kills associated with Chattonella marina : cytological and physiological evidence
    ( 2005-01-05) Tang, Janet Y. M. ; Anderson, Donald M. ; Au, Doris W. T.
    Chattonella marina, a harmful algal bloom (HAB) causative species, was used to study the mortality, physiology, and pathology of a marine stenohaline fish, goldlined seabream exposed to the toxic alga. The median lethal time (LT50) was 3 h upon exposure to 8000 cells/ml of C. marina. Significant induction of filamental chloride cells (CCs) [i.e. increases in CC fractional area and in the volume density of CCs], concomitant with significant reduction of blood osmolality, were found in C. marina treated fish. To verify whether the toxicity of C. marina was mediated through oxidative stress, a hydrogen peroxide exposure experiment was carried out and the toxicity as well as cytological and physiological changes were compared with the C. marina treatment. Hydrogen peroxide at a concentration of 500 μM H2O2, (i.e. 25 times higher than that produced by 8000 cells/ml of C. marina (20 μM H2O2)) was unable to induce similar CC alterations and osmoregulatory impairment in fish as observed in the C. marina treatment. Non-specific membrane damage such as severe loss of microvilli projections on the CC apical opening and rupture of epithelial membranes in the lamellae were observed. The LT50 was 6 h, two times longer than that with 8000 cells/ml of C. marina. Based on the cytological and physiological evidence and toxicity data, the mechanism by which C. marina kills fish appears to be very different from that caused by H2O2/ROS. Osmoregulatory distress is the major cause of fish death upon exposure to C. marina.
  • Preprint
    Antioxidant responses and lipid peroxidation in gills and erythrocytes of fish (Rhabdosarga sarba) upon exposure to Chattonella marina and hydrogen peroxide : implications on the cause of fish kills
    ( 2006-05-20) Woo, Stephanie P. S. ; Liu, Wenhua ; Au, Doris W. T. ; Anderson, Donald M. ; Wu, Rudolf S. S.
    Chattonella marina, a red tide or harmful algal bloom species, has caused mass fish kills and serious economic loss worldwide, and yet its toxic actions remain highly controversial. Previous studies have shown that this species is able to produce reactive oxygen species (ROS), and therefore postulated that ROS are the causative agents of fish kills. The present study investigates antioxidant responses and lipid peroxidation in gills and erythrocytes of fish (Rhabdosarga sarba) upon exposure to C. marina, compared with responses exposed to equivalent and higher levels of ROS exposure. Even though C. marina can produce a high level of ROS, gills and erythrocytes of sea bream exposed to C. marina for 1 to 6 h showed neither significant induction of antioxidant enzymes nor lipid peroxidation. Antioxidant responses and oxidative damage did not occur as fish mortality began to occur, yet could be induced upon exposure to artificially supplied ROS levels an order of magnitude higher. The result of this study implies that ROS produced by C. marina is not the principal cause of fish kills.