L’Ecuyer
Tristan S.
L’Ecuyer
Tristan S.
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleThe observed state of the water cycle in the early twenty-first century(American Meteorological Society, 2015-11-01) Rodell, Matthew ; Beaudoing, Hiroko K. ; L’Ecuyer, Tristan S. ; Olson, William S. ; Famiglietti, James S. ; Houser, Paul R. ; Adler, Robert ; Bosilovich, Michael G. ; Clayson, Carol A. ; Chambers, Don P. ; Clark, Edward A. ; Fetzer, Eric J. ; Gao, X. ; Gu, Guojun ; Hilburn, K. A. ; Huffman, George J. ; Lettenmaier, Dennis P. ; Liu, W. Timothy ; Robertson, Franklin R. ; Schlosser, C. Adam ; Sheffield, Justin ; Wood, Eric F.This study quantifies mean annual and monthly fluxes of Earth’s water cycle over continents and ocean basins during the first decade of the millennium. To the extent possible, the flux estimates are based on satellite measurements first and data-integrating models second. A careful accounting of uncertainty in the estimates is included. It is applied within a routine that enforces multiple water and energy budget constraints simultaneously in a variational framework in order to produce objectively determined optimized flux estimates. In the majority of cases, the observed annual surface and atmospheric water budgets over the continents and oceans close with much less than 10% residual. Observed residuals and optimized uncertainty estimates are considerably larger for monthly surface and atmospheric water budget closure, often nearing or exceeding 20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South Atlantic Oceans. The residuals in South America and Africa tend to be smaller, possibly because cold land processes are negligible. Fluxes were poorly observed over the Arctic Ocean, certain seas, Antarctica, and the Australasian and Indonesian islands, leading to reliance on atmospheric analysis estimates. Many of the satellite systems that contributed data have been or will soon be lost or replaced. Models that integrate ground-based and remote observations will be critical for ameliorating gaps and discontinuities in the data records caused by these transitions. Continued development of such models is essential for maximizing the value of the observations. Next-generation observing systems are the best hope for significantly improving global water budget accounting.
-
ArticleMeasuring global ocean heat content to estimate the Earth energy Imbalance(Frontiers Media, 2019-08-20) Meyssignac, Benoit ; Boyer, Tim ; Zhao, Zhongxiang ; Hakuba, Maria Z. ; Landerer, Felix ; Stammer, Detlef ; Kohl, Armin ; Kato, Seiji ; L’Ecuyer, Tristan S. ; Ablain, Michaël ; Abraham, John Patrick ; Blazquez, Alejandro ; Cazenave, Anny ; Church, John A. ; Cowley, Rebecca ; Cheng, Lijing ; Domingues, Catia M. ; Giglio, Donata ; Gouretski, Viktor ; Ishii, Masayoshi ; Johnson, Gregory C. ; Killick, Rachel E. ; Legler, David ; Llovel, William ; Lyman, John ; Palmer, Matthew D. ; Piotrowicz, Stephen R. ; Purkey, Sarah G. ; Roemmich, Dean ; Roca, Rémy ; Savita, Abhishek ; von Schuckmann, Karina ; Speich, Sabrina ; Stephens, Graeme ; Wang, Gongjie ; Wijffels, Susan E. ; Zilberman, NathalieThe energy radiated by the Earth toward space does not compensate the incoming radiation from the Sun leading to a small positive energy imbalance at the top of the atmosphere (0.4–1 Wm–2). This imbalance is coined Earth’s Energy Imbalance (EEI). It is mostly caused by anthropogenic greenhouse gas emissions and is driving the current warming of the planet. Precise monitoring of EEI is critical to assess the current status of climate change and the future evolution of climate. But the monitoring of EEI is challenging as EEI is two orders of magnitude smaller than the radiation fluxes in and out of the Earth system. Over 93% of the excess energy that is gained by the Earth in response to the positive EEI accumulates into the ocean in the form of heat. This accumulation of heat can be tracked with the ocean observing system such that today, the monitoring of Ocean Heat Content (OHC) and its long-term change provide the most efficient approach to estimate EEI. In this community paper we review the current four state-of-the-art methods to estimate global OHC changes and evaluate their relevance to derive EEI estimates on different time scales. These four methods make use of: (1) direct observations of in situ temperature; (2) satellite-based measurements of the ocean surface net heat fluxes; (3) satellite-based estimates of the thermal expansion of the ocean and (4) ocean reanalyses that assimilate observations from both satellite and in situ instruments. For each method we review the potential and the uncertainty of the method to estimate global OHC changes. We also analyze gaps in the current capability of each method and identify ways of progress for the future to fulfill the requirements of EEI monitoring. Achieving the observation of EEI with sufficient accuracy will depend on merging the remote sensing techniques with in situ measurements of key variables as an integral part of the Ocean Observing System.
-
ArticleThe observed state of the energy budget in the early twenty-first century(American Meteorological Society, 2015-11-01) L’Ecuyer, Tristan S. ; Beaudoing, Hiroko K. ; Rodell, Matthew ; Olson, William S. ; Lin, B. ; Kato, S. ; Clayson, Carol A. ; Wood, Eric F. ; Sheffield, Justin ; Adler, Robert ; Huffman, George J. ; Bosilovich, Michael G. ; Gu, Guojun ; Robertson, Franklin R. ; Houser, Paul R. ; Chambers, Don P. ; Famiglietti, James S. ; Fetzer, Eric J. ; Liu, W. Timothy ; Gao, X. ; Schlosser, C. Adam ; Clark, Edward A. ; Lettenmaier, Dennis P. ; Hilburn, K. A.New objectively balanced observation-based reconstructions of global and continental energy budgets and their seasonal variability are presented that span the golden decade of Earth-observing satellites at the start of the twenty-first century. In the absence of balance constraints, various combinations of modern flux datasets reveal that current estimates of net radiation into Earth’s surface exceed corresponding turbulent heat fluxes by 13–24 W m−2. The largest imbalances occur over oceanic regions where the component algorithms operate independent of closure constraints. Recent uncertainty assessments suggest that these imbalances fall within anticipated error bounds for each dataset, but the systematic nature of required adjustments across different regions confirm the existence of biases in the component fluxes. To reintroduce energy and water cycle closure information lost in the development of independent flux datasets, a variational method is introduced that explicitly accounts for the relative accuracies in all component fluxes. Applying the technique to a 10-yr record of satellite observations yields new energy budget estimates that simultaneously satisfy all energy and water cycle balance constraints. Globally, 180 W m−2 of atmospheric longwave cooling is balanced by 74 W m−2 of shortwave absorption and 106 W m−2 of latent and sensible heat release. At the surface, 106 W m−2 of downwelling radiation is balanced by turbulent heat transfer to within a residual heat flux into the oceans of 0.45 W m−2, consistent with recent observations of changes in ocean heat content. Annual mean energy budgets and their seasonal cycles for each of seven continents and nine ocean basins are also presented.