Pena-Molino Beatriz

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 4 of 4
  • Article
    Revisiting the seasonal cycle of the Timor throughflow: impacts of winds, waves and eddies
    (American Geophysical Union, 2022-04-05) Pena-Molino, Beatriz ; Sloyan, Bernadette M. ; Nikurashin, Maxim ; Richet, Océane ; Wijffels, Susan E.
    The tropical Pacific and Indian Oceans are connected via a complex system of currents known as the Indonesian Throughflow (ITF). More than 30% of the variability in the ITF is linked to the seasonal cycle, influenced by the Monsoon winds. Despite previous efforts, a detailed knowledge of the ITF response to the components of the seasonal forcing is still lacking. Here, we describe the seasonal cycle of the ITF based on new observations of velocity and properties in Timor Passage, satellite altimetry and a high-resolution regional model. These new observations reveal a complex mean and seasonally varying flow field. The amplitude of the seasonal cycle in volume transport is approximately 6 Sv. The timing of the seasonal cycle, with semi-annual maxima (minima) in May and December (February and September), is controlled by the flow below 600 m associated with semi-annual Kelvin waves. The transport of thermocline waters (<300 m) is less variable than the deep flow but larger in magnitude. This top layer is modulated remotely by cycles of divergence in the Banda Sea, and locally through Ekman transport, coastal upwelling, and non-linearities of the flow. The latter manifests through the formation of eddies that reduce the throughflow during the Southeast Monsoon, when is expected to be maximum. While the reduction in transport associated with the eddies is small, its impact on heat transport is large. These non-linear dynamics develop over small scales (<10 km), and without high enough resolution, both observations and models will fail to capture them adequately.
  • Article
    Direct observations of the Antarctic Slope Current transport at 113°E
    (John Wiley & Sons, 2016-10-12) Pena-Molino, Beatriz ; McCartney, Michael S. ; Rintoul, Stephen R.
    The Antarctic Slope Current (ASC), defined here as the region of westward flow along the continental slope off Antarctica, forms the southern limb of the subpolar gyres. It regulates the exchange of water across the shelf break and provides a path for interbasin westward transport. Despite its significance, the ASC remains largely unobserved around most of the Antarctic continent. Here we present direct velocity observations from a 17 month current meter moored array deployed across the continental slope between the 1000 and the 4200 m isobaths, in the southeastern Indian Ocean near 113°E. The observed time-mean flow consists of a surface-intensified jet associated with the Antarctic Slope Front (ASF) and a broader bottom-intensified westward flow that extends out to approximately the 4000 m isobath and is strongest along the upper slope. The time-mean transport of the ASC is −29.2 Sv. Fluctuations in the transport are large, typically exceeding the mean by a factor of 2. They are mainly due to changes in the northward extent of the current over the lower slope. However, seasonal changes in the wind also drive variations in the transport of the ASF and the flow in the upper slope. Both mean and variability are largely barotropic, thus invisible to traditional geostrophic methods
  • Preprint
    Recent changes in the Labrador Sea Water within the Deep Western Boundary Current southeast of Cape Cod
    ( 2011-07-20) Pena-Molino, Beatriz ; Joyce, Terrence M. ; Toole, John M.
    Water properties measured by the central mooring in the Line W mooring array southeast of Cape Cod document a large character shift during the period of November 2001 to April 2008. The observed temperature, salinity and planetary potential vorticity (PPV) anomalies manifest changes in the formation region of the water masses present at Station W, specifically upper Labrador Sea Water (uLSW), deep Labrador Sea Water (dLSW) and Overflow Water (OW). During the observation period, the minimum in the PPV anomaly field relative to the record mean PPV profile migrated from 1500m, where it was originally found, to 700m. Temporal changes in the vertical distribution of temperature and salinity were correlated with the PPV changes. This suggests a dLSW-dominated first half of the record, versus an uLSW-dominated second half. The structure of these anomalies is consistent with observations within the Labrador Sea, and their transit time to Line W agrees well with tracer-derived times for signals spreading along the western boundary. In that context, the observed water properties at Line W in the early 2000s reflected the intense deep convection in the Labrador Sea in the mid 1990s, with less intense convection subsequently affecting lighter isopycnals. The observed velocity field is dominated by high-frequency (periods of days to months) fluctuations, however, a fraction of the velocity variability is correlated with changes in water mass properties, and indicate a gradual acceleration of the southwestward flow, with a corresponding increase in Deep Western Boundary Current transport.
  • Article
    Variability in the Deep Western Boundary Current : local versus remote forcing
    (American Geophysical Union, 2012-12-22) Pena-Molino, Beatriz ; Joyce, Terrence M. ; Toole, John M.
    Horizontal velocity, temperature and salinity measurements from the Line W array for the period 2004–2008 show large changes in the water mass structure and circulation of the Deep Western Boundary Current (DWBC). Fluctuations in the flow with periods from 10 to 60 days are bottom intensified: signals most likely associated with topographic Rossby waves (TRW). A fraction (∼15%) of the DWBC transport variability is caused by Gulf Stream rings and meanders. These flow anomalies are surface intensified and fluctuate at frequencies lower than the TRW. Interannual variability in the velocity field appears to be related to changes in the hydrographic properties. The dominant mode of variability is characterized by an overall freshening, cooling, a potential vorticity (PV) increase in the deep Labrador Sea Water (dLSW) and a PV decrease in the Overflow Water (OW). The variability in the flow associated with these property changes is not spatially homogeneous. Offshore (water depths larger than 3500 m) changes in the velocity are in phase with PV changes in the OW: a decrease in the OW PV is accompanied by an increase in the southward (negative) transport. Conversely, variations of the inshore flow are in phase with changes in the dLSW PV (increasing PV and decreasing transport). This trend, true for most of the record, reverses after the winter of 2007–2008. A sudden decrease of the dLSW PV is observed, with a corresponding intensification of the flow in the inner DWBC as well as a northward shift in the Gulf Stream axis.