Olabarrieta Maitane

No Thumbnail Available
Last Name
Olabarrieta
First Name
Maitane
ORCID
0000-0002-7619-7992

Search Results

Now showing 1 - 14 of 14
  • Article
    Ocean–atmosphere dynamics during Hurricane Ida and Nor’Ida : an application of the coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system
    (Elsevier B.V., 2011-12-30) Olabarrieta, Maitane ; Warner, John C. ; Armstrong, Brandy ; Zambon, Joseph B. ; He, Ruoying
    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor’Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor’easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor’Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness-based parameterization (OOST) provided the best results for wind and wave growth prediction. However, the best agreement between the measured (CODAR) and computed surface currents and storm surge values was obtained with the wave steepness-based roughness parameterization (TY2001), although the differences obtained with respect to DGHQ were not significant. The influence of sea surface temperature (SST) fields on the atmospheric boundary layer dynamics was examined; in particular, we evaluated how the SST affects wind wave generation, surface currents and storm surges. The integrated hydrograph and integrated wave height, parameters that are highly correlated with the storm damage potential, were found to be highly sensitive to the ocean surface roughness parameterization.
  • Article
    Modeling the morphodynamics of coastal responses to extreme events: what shape are we in?
    (Annual Reviews, 2021-07-27) Sherwood, Christopher R. ; van Dongeren, Ap ; Doyle, James D. ; Hegermiller, Christie A. ; Hsu, Tian-Jian ; Kalra, Tarandeep S. ; Olabarrieta, Maitane ; Penko, Allison M. ; Rafati, Yashar ; Roelvink, Dano ; van der Lugt, Marlies ; Veeramony, Jay ; Warner, John C.
    This review focuses on recent advances in process-based numerical models of the impact of extreme storms on sandy coasts. Driven by larger-scale models of meteorology and hydrodynamics, these models simulate morphodynamics across the Sallenger storm-impact scale, including swash,collision, overwash, and inundation. Models are becoming both wider (as more processes are added) and deeper (as detailed physics replaces earlier parameterizations). Algorithms for wave-induced flows and sediment transport under shoaling waves are among the recent developments. Community and open-source models have become the norm. Observations of initial conditions (topography, land cover, and sediment characteristics) have become more detailed, and improvements in tropical cyclone and wave models provide forcing (winds, waves, surge, and upland flow) that is better resolved and more accurate, yielding commensurate improvements in model skill. We foresee that future storm-impact models will increasingly resolve individual waves, apply data assimilation, and be used in ensemble modeling modes to predict uncertainties.
  • Article
    Modeling of barrier breaching during hurricanes Sandy and Matthew
    (American Geophysical Union, 2022-01-26) Hegermiller, Christie A. ; Warner, John C. ; Olabarrieta, Maitane ; Sherwood, Christopher R. ; Kalra, Tarandeep S.
    Physical processes driving barrier island change during storms are important to understand to mitigate coastal hazards and to evaluate conceptual models for barrier evolution. Spatial variations in barrier island topography, landcover characteristics, and nearshore and back-barrier hydrodynamics can yield complex morphological change that requires models of increasing resolution and physical complexity to predict. Using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system, we investigated two barrier island breaches that occurred on Fire Island, NY during Hurricane Sandy (2012) and at Matanzas, FL during Hurricane Matthew (2016). The model employed a recently implemented infragravity (IG) wave driver to represent the important effects of IG waves on nearshore water levels and sediment transport. The model simulated breaching and other changes with good skill at both locations, resolving differences in the processes and evolution. The breach simulated at Fire Island was 250 m west of the observed breach, whereas the breach simulated at Matanzas was within 100 m of the observed breach. Implementation of the vegetation module of COAWST to allow three-dimensional drag over dune vegetation at Fire Island improved model skill by decreasing flows across the back-barrier, as opposed to varying bottom roughness that did not positively alter model response. Analysis of breach processes at Matanzas indicated that both far-field and local hydrodynamics influenced breach creation and evolution, including remotely generated waves and surge, but also surge propagation through back-barrier waterways. This work underscores the importance of resolving the complexity of nearshore and back-barrier systems when predicting barrier island change during extreme events.
  • Article
    Effects of density-driven flows on the long-term morphodynamic evolution of funnel-shaped estuaries
    (The Authors, 2018-10-13) Olabarrieta, Maitane ; Geyer, W. Rockwell ; Coco, Giovanni ; Friedrichs, Carl T. ; Cao, Zhendong
    Subtidal flows driven by density gradients affect the tide‐averaged sediment transport in estuaries and, therefore, can influence their long‐term morphodynamic evolution. The three‐dimensional Coupled Ocean‐Atmosphere‐Wave‐Sediment Transport modeling system is applied to numerically analyze the effects of baroclinicity and Earth's rotation on the long‐term morphodynamic evolution of idealized funnel‐shaped estuaries. The morphodynamic evolution in all the analyzed cases reproduced structures identified in many tide‐dominated estuaries: a meandering region in the fluvial‐tidal transition zone, a tidal maximum area close to the head, and a turbidity maxima region in the brackish zone. As the morphology of the estuaries evolved, the tidal propagation (including its asymmetry), the salinity gradient, and the strength of subtidal flows changed, which reflects the strong bathymetric control of these systems. The comparison with barotropic simulations showed that the three‐dimensional structure of the flow (induced by density gradients) has leading order effects on the morphodynamic evolution. Density gradient‐driven subtidal flows (1) promote near‐bed flood dominance and, consequently, the import of sediment into the estuary, (2) accelerate the morphodynamic evolution of the upper/middle estuary, (3) promote a more concave shape of the upper estuary and reduce the ebb‐tidal delta volume, and (4) produce an asymmetric bathymetry and inhibit the formation of alternate bars that would form under barotropic conditions. This latter effect is the consequence of the combined effect of Earth's rotation and baroclinicity.
  • Preprint
    Tsunami response in semienclosed tidal basins using an aggregated model
    ( 2009-09) Baston, Susana ; Olabarrieta, Maitane ; Lomonaco, Pedro ; Mendez, Fernando J. ; Medina, Raul
    An aggregated model to evaluate tsunami response in semi-enclosed water bodies is presented in this work. The model is based on one-dimensional shallow water equations and can include long-wave external forcing such as a tsunami. It has been successfully validated against experimental data from a physical model, and its predictions for a case study have been compared with results from the COMCOT numerical model. The model can be used as a predictive tool because a calibration using a theoretical value for expansion and contraction losses has been performed, and differences with the typical calibration are less than 10% which is considered acceptable. This allows using the model in the absence of measured data, which is very difficult to obtain in case of a tsunami event. A case study for the Gulf of Cádiz (Spain) has been simulated with the COMCOT model. The aggregated model predicted the response for a harbor more accurately than for estuarine systems with tidal flats. Nevertheless, the aggregated model has been demonstrated as a useful general tool to predict the response of semi-enclosed tidal basins to a tsunami event, and hybrid models coupling advanced models to simulate ocean tsunami propagation with the model presented here would be useful in developing coastal warning alert systems.
  • Article
    Wave-current interaction between Hurricane Matthew wave fields and the Gulf Stream
    (American Meteorological Society, 2019-11-01) Hegermiller, Christie A. ; Warner, John C. ; Olabarrieta, Maitane ; Sherwood, Christopher R.
    Hurricanes interact with the Gulf Stream in the South Atlantic Bight (SAB) through a wide variety of processes, which are crucial to understand for prediction of open-ocean and coastal hazards during storms. However, it remains unclear how waves are modified by large-scale ocean currents under storm conditions, when waves are aligned with the storm-driven circulation and tightly coupled to the overlying wind field. Hurricane Matthew (2016) impacted the U.S. Southeast coast, causing extensive coastal change due to large waves and elevated water levels. The hurricane traveled on the continental shelf parallel to the SAB coastline, with the right side of the hurricane directly over the Gulf Stream. Using the Coupled Ocean–Atmosphere–Wave–Sediment Transport modeling system, we investigate wave–current interaction between Hurricane Matthew and the Gulf Stream. The model simulates ocean currents and waves over a grid encompassing the U.S. East Coast, with varied coupling of the hydrodynamic and wave components to isolate the effect of the currents on the waves, and the effect of the Gulf Stream relative to storm-driven circulation. The Gulf Stream modifies the direction of the storm-driven currents beneath the right side of the hurricane. Waves transitioned from following currents that result in wave lengthening, through negative current gradients that result in wave steepening and dissipation. Wave–current interaction over the Gulf Stream modified maximum coastal total water levels and changed incident wave directions at the coast by up to 20°, with strong implications for the morphodynamic response and stability of the coast to the hurricane.
  • Article
    The role of morphology and wave-current interaction at tidal inlets : an idealized modeling analysis
    (John Wiley & Sons, 2014-12-23) Olabarrieta, Maitane ; Geyer, W. Rockwell ; Kumar, Nirnimesh
    The outflowing currents from tidal inlets are influenced both by the morphology of the ebb-tide shoal and interaction with incident surface gravity waves. Likewise, the propagation and breaking of incident waves are affected by the morphology and the strength and structure of the outflowing current. The 3-D Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system is applied to numerically analyze the interaction between currents, waves, and bathymetry in idealized inlet configurations. The bathymetry is found to be a dominant controlling variable. In the absence of an ebb shoal and with weak wave forcing, a narrow outflow jet extends seaward with little lateral spreading. The presence of an ebb-tide shoal produces significant pressure gradients in the region of the outflow, resulting in enhanced lateral spreading of the jet. Incident waves cause lateral spreading and limit the seaward extent of the jet, due both to conversion of wave momentum flux and enhanced bottom friction. The interaction between the vorticity of the outflow jet and the wave stokes drift is also an important driving force for the lateral spreading of the plume. For weak outflows, the outflow jet is actually enhanced by strong waves when there is a channel across the bar, due to the “return current” effect. For both strong and weak outflows, waves increase the alongshore transport in both directions from the inlet due to the wave-induced setup over the ebb shoal. Wave breaking is more influenced by the topography of the ebb shoal than by wave-current interaction, although strong outflows show intensified breaking at the head of the main channel.
  • Article
    Wave-current interaction in Willapa Bay
    (American Geophysical Union, 2011-12-13) Olabarrieta, Maitane ; Warner, John C. ; Kumar, Nirnimesh
    This paper describes the importance of wave-current interaction in an inlet-estuary system. The three-dimensional, fully coupled, Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system was applied in Willapa Bay (Washington State) from 22 to 29 October 1998 that included a large storm event. To represent the interaction between waves and currents, the vortex-force method was used. Model results were compared with water elevations, currents, and wave measurements obtained by the U.S. Army Corp of Engineers. In general, a good agreement between field data and computed results was achieved, although some discrepancies were also observed in regard to wave peak directions in the most upstream station. Several numerical experiments that considered different forcing terms were run in order to identify the effects of each wind, tide, and wave-current interaction process. Comparison of the horizontal momentum balances results identified that wave-breaking-induced acceleration is one of the leading terms in the inlet area. The enhancement of the apparent bed roughness caused by waves also affected the values and distribution of the bottom shear stress. The pressure gradient showed significant changes with respect to the pure tidal case. During storm conditions the momentum balance in the inlet shares the characteristics of tidal-dominated and wave-dominated surf zone environments. The changes in the momentum balance caused by waves were manifested both in water level and current variations. The most relevant effect on hydrodynamics was a wave-induced setup in the inner part of the estuary.
  • Article
    Tropical cyclone rainbands can trigger meteotsunamis
    (Nature Research, 2020-02-02) Shi, Luming ; Olabarrieta, Maitane ; Nolan, David S. ; Warner, John C.
    Tropical cyclones are one of the most destructive natural hazards and much of the damage and casualties they cause are flood-related. Accurate characterization and prediction of total water levels during extreme storms is necessary to minimize coastal impacts. While meteotsunamis are known to influence water levels and to produce severe consequences, their impacts during tropical cyclones are underappreciated. This study demonstrates that meteotsunami waves commonly occur during tropical cyclones, and that they can contribute significantly to total water levels. We use an idealized coupled ocean–atmosphere–wave numerical model to analyze tropical cyclone-induced meteotsunami generation and propagation mechanisms. We show that the most extreme meteotsunami events are triggered by inherent features of the structure of tropical cyclones: inner and outer spiral rainbands. While outer distant spiral rainbands produce single-peak meteotsunami waves, inner spiral rainbands trigger longer lasting wave trains on the front side of the tropical cyclones.
  • Preprint
    Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications
    ( 2012-01) Kumar, Nirnimesh ; Voulgaris, George ; Warner, John C. ; Olabarrieta, Maitane
    The coupled ocean-atmosphere-wave-sediment transport modeling system (COAWST) enables simulations that integrate oceanic, atmospheric, wave and morphological processes in the coastal ocean. Within the modeling system, the three-dimensional ocean circulation module (ROMS) is coupled with the wave generation and propagation model (SWAN) to allow full integration of the effect of waves on circulation and vice versa. The existing wave-current coupling component utilizes a depth dependent radiation stress approach. In here we present a new approach that uses the vortex force formalism. The formulation adopted and the various parameterizations used in the model as well as their numerical implementation are presented in detail. The performance of the new system is examined through the presentation of four test cases. These include obliquely incident waves on a synthetic planar beach and a natural barred beach (DUCK’ 94); normal incident waves on a nearshore barred morphology with rip channels; and wave-induced mean flows outside the surf zone at the Martha’s Vineyard Coastal Observatory (MVCO). Model results from the planar beach case show good agreement with depth-averaged analytical solutions and with theoretical flow structures. Simulation results for the DUCK’ 94 experiment agree closely with measured profiles of cross-shore and longshore velocity data from Garcez-Faria et al. (1998, 2000). Diagnostic simulations showed that the nonlinear processes of wave roller generation and wave-induced mixing are important for the accurate simulation of surf zone flows. It is further recommended that a more realistic approach for determining the contribution of wave rollers and breaking induced turbulent mixing can be formulated using non-dimensional parameters which are functions of local wave parameters and the beach slope. Dominant terms in the cross-shore momentum balance are found to be the quasi-static pressure gradient and breaking acceleration. In the alongshore direction, bottom stress, breaking acceleration, horizontal advection and horizontal vortex forces dominate the momentum balance. The simulation results for the bar / rip channel morphology case clearly show the ability of the modeling system to reproduce horizontal and vertical circulation patterns similar to those found in laboratory studies and to numerical simulations using the radiation stress representation. The vortex force term is found to be more important at locations where strong flow vorticity interacts with the wave-induced Stokes flow field. Outside the surf zone, the three-dimensional model simulations of wave-induced flows for non- breaking waves closely agree with flow observations from MVCO, with the vertical structure of the simulated flow varying as a function of the vertical viscosity as demonstrated by Lentz et al. (2008).
  • Article
    Observations and modeling of a tidal inlet dye tracer plume
    (John Wiley & Sons, 2016-10-24) Feddersen, Falk ; Olabarrieta, Maitane ; Guza, R. T. ; Winters, Dylan ; Raubenheimer, Britt ; Elgar, Steve
    A 9 km long tracer plume was created by continuously releasing Rhodamine WT dye for 2.2 h during ebb tide within the southern edge of the main tidal channel at New River Inlet, NC on 7 May 2012, with highly obliquely incident waves and alongshore winds. Over 6 h from release, COAWST (coupled ROMS and SWAN, including wave, wind, and tidal forcing) modeled dye compares well with (aerial hyperspectral and in situ) observed dye concentration. Dye first was transported rapidly seaward along the main channel and partially advected across the ebb-tidal shoal until reaching the offshore edge of the shoal. Dye did not eject offshore in an ebb-tidal jet because the obliquely incident breaking waves retarded the inlet-mouth ebb-tidal flow and forced currents along the ebb shoal. The dye plume largely was confined to <4 m depth. Dye was then transported downcoast in the narrow (few 100 m wide) surfzone of the beach bordering the inlet at 0.3 inline image driven by wave breaking. Over 6 h, the dye plume is not significantly affected by buoyancy. Observed dye mass balances close indicating all released dye is accounted for. Modeled and observed dye behaviors are qualitatively similar. The model simulates well the evolution of the dye center of mass, lateral spreading, surface area, and maximum concentration, as well as regional (“inlet” and “ocean”) dye mass balances. This indicates that the model represents well the dynamics of the ebb-tidal dye plume. Details of the dye transport pathways across the ebb shoal are modeled poorly perhaps owing to low-resolution and smoothed model bathymetry. Wave forcing effects have a large impact on the dye transport.
  • Article
    An experimental platform to study wind, hydrodynamic, and biochemical conditions in the Littoral Zone during extreme coastal storms
    (Oceanography Society, 2023-01-27) Phillips, Brian M. ; Masters, Forrest J. ; Raubenheimer, Britt ; Olabarrieta, Maitane ; Morrison, Elise S. ; Fernández-Cabán, Pedro L. ; Ferraro, Christopher C. ; Davis, Justin R. ; Rawlinson, Taylor A. ; Rodgers, Michael B.
    Tropical cyclones and other extreme coastal storms cause widespread interruption and damage to meteorological and hydrological measurement stations exactly when researchers need them most. There is a longstanding need to collect collocated and synchronized measurements in areas where storms severely damage civil/coastal infrastructure. To fill this observational gap, researchers led by author Masters developed a state-of-the-art monitoring station called a “Sentinel.” Sentinels are intended for temporary installation on the beach between the mean tidal datum and the sand dunes and are engineered to operate in and measure extreme wind, storm surge, wave, and hazardous water quality conditions. They are envisioned as a shared-use resource—a hardened IoT (Internet of Things) platform set up in the right place at the right time to study wind and wave loads, coastal erosion and morphology changes, water quality, and other processes during extreme coastal storms.
  • Article
    Ocean surface gravity wave evolution during three along-shelf propagating tropical cyclones: model’s performance of wind-sea and swell
    (MDPI, 2023-05-31) Hsu, Chu-En ; Hegermiller, Christie A. ; Warner, John C. ; Olabarrieta, Maitane
    Despite recent advancements in ocean–wave observations, how a tropical cyclone’s (TC’s) track, intensity, and translation speed affect the directional wave spectra evolution is poorly understood. Given the scarcity of available wave spectral observations during TCs, there are few studies about the performance of spectral wave models, such as Simulating Waves Nearshore (SWAN), under various TC scenarios. We combined the National Data Buoy Center observations and numerical model hindcasts to determine the linkages between wave spectrum evolution and TC characteristics during hurricanes Matthew 2016, Dorian 2019, and Isaias 2020. Five phases were identified in the wave spectrogram based on the normalized distance to the TC, the sea–swell separation frequency, and the peak wave frequency, indicating how the wave evolution relates to TC characteristics. The wave spectral structure and SWAN model’s performance for wave energy distribution within different phases were identified. The TC intensity and its normalized distance to a buoy were the dominant factors in the energy levels and peak wave frequencies. The TC heading direction and translation speed were more likely to impact the durations of the phases. TC translation speeds also influenced the model’s performance on swell energy. The knowledge gained in this work paves the way for improving model’s performance during severe weather events.
  • Article
    Total water levels along the South Atlantic Bight during three along-shelf propagating tropical cyclones: Relative contributions of storm surge and wave runup
    (European Geosciences Union, 2023-12-22) Hsu, Chu-En ; Serafin, Katherine A. ; Yu, Xiao ; Hegermiller, Christie A. ; Warner, John C. ; Olabarrieta, Maitane
    Total water levels (TWLs), including the contribution of wind waves, associated with tropical cyclones (TCs) are among the most damaging hazards faced by coastal communities. TC-induced economic losses are expected to increase because of stronger TC intensity, sea level rise, and increased populations along the coasts. TC intensity, translation speed, and distance to the coast affect the magnitude and duration of increased TWLs and wind waves. Under climate change, the proportion of high-intensity TCs is projected to increase globally, whereas the variation pattern of TC translation speed also depends on the ocean basin and latitude. There is an urgent need to improve our understanding of the linkages between TC characteristics and TWL components. In the past few years, hurricanes Matthew (2016), Dorian (2019), and Isaias (2020) propagated over the South Atlantic Bight (SAB) with similar paths but resulted in different coastal impacts. We combined in situ observations and numerical simulations with the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system to analyze the extreme TWLs under the three TCs. Model verification showed that the TWL components were well reproduced by the present model setup. Our results showed that the peak storm surge and the peak wave runup depended mainly on the TC intensity, the distance to the TC eye, and the TC heading direction. A decrease in TC translation speed primarily led to longer exceedance durations of TWLs, which may result in more severe economic losses. Wave-dependent water level components (i.e., wave setup and wave swash) were found to dominate the peak TWL within the near-TC field. Our results also showed that in specific conditions, the prestorm wave runup associated with the TC-induced swell may lead to TWLs higher than at the peak of the storm. This was the case along the SAB during Hurricane Isaias. Isaias's fast TC translation speed and the fact that its swell was not blocked by any islands were the main factors contributing to these peak TWLs ahead of the storm peak.