Jones Daniel O. B.

No Thumbnail Available
Last Name
Jones
First Name
Daniel O. B.
ORCID

Search Results

Now showing 1 - 6 of 6
  • Article
    Vailulu'u Seamount, Samoa : life and death on an active submarine volcano
    (National Academy of Sciences, 2006-04-13) Staudigel, Hubert ; Hart, Stanley R. ; Pile, Adele ; Bailey, Bradley E. ; Baker, Edward T. ; Brooke, Sandra ; Connelly, Douglas P. ; Haucke, Lisa ; German, Christopher R. ; Hudson, Ian ; Jones, Daniel O. B. ; Koppers, Anthony A. P. ; Konter, Jasper G. ; Lee, Ray ; Pietsch, Theodore W. ; Tebo, Bradley M. ; Templeton, Alexis S. ; Zierenberg, Robert ; Young, Craig M.
    Submersible exploration of the Samoan hotspot revealed a new, 300-m-tall, volcanic cone, named Nafanua, in the summit crater of Vailulu'u seamount. Nafanua grew from the 1,000-m-deep crater floor in <4 years and could reach the sea surface within decades. Vents fill Vailulu'u crater with a thick suspension of particulates and apparently toxic fluids that mix with seawater entering from the crater breaches. Low-temperature vents form Fe oxide chimneys in many locations and up to 1-m-thick layers of hydrothermal Fe floc on Nafanua. High-temperature (81°C) hydrothermal vents in the northern moat (945-m water depth) produce acidic fluids (pH 2.7) with rising droplets of (probably) liquid CO2. The Nafanua summit vent area is inhabited by a thriving population of eels (Dysommina rugosa) that feed on midwater shrimp probably concentrated by anticyclonic currents at the volcano summit and rim. The moat and crater floor around the new volcano are littered with dead metazoans that apparently died from exposure to hydrothermal emissions. Acid-tolerant polychaetes (Polynoidae) live in this environment, apparently feeding on bacteria from decaying fish carcasses. Vailulu'u is an unpredictable and very active underwater volcano presenting a potential long-term volcanic hazard. Although eels thrive in hydrothermal vents at the summit of Nafanua, venting elsewhere in the crater causes mass mortality. Paradoxically, the same anticyclonic currents that deliver food to the eels may also concentrate a wide variety of nektonic animals in a death trap of toxic hydrothermal fluids.
  • Article
    Major impacts of climate change on deep-sea benthic ecosystems
    (University of California Press, 2017-02-23) Sweetman, Andrew K. ; Thurber, Andrew R. ; Smith, Craig R. ; Levin, Lisa A. ; Mora, Camilo ; Wei, Chih-Lin ; Gooday, Andrew J. ; Jones, Daniel O. B. ; Rex, Michael ; Yasuhara, Moriaki ; Ingels, Jeroen ; Ruhl, Henry A. ; Frieder, Christina A. ; Danovaro, Roberto ; Würzberg, Laura ; Baco, Amy R. ; Grupe, Benjamin ; Pasulka, Alexis ; Meyer, Kirstin S. ; Dunlop, Katherine Mary ; Henry, Lea-Anne ; Roberts, J. Murray
    The deep sea encompasses the largest ecosystems on Earth. Although poorly known, deep seafloor ecosystems provide services that are vitally important to the entire ocean and biosphere. Rising atmospheric greenhouse gases are bringing about significant changes in the environmental properties of the ocean realm in terms of water column oxygenation, temperature, pH and food supply, with concomitant impacts on deep-sea ecosystems. Projections suggest that abyssal (3000–6000 m) ocean temperatures could increase by 1°C over the next 84 years, while abyssal seafloor habitats under areas of deep-water formation may experience reductions in water column oxygen concentrations by as much as 0.03 mL L–1 by 2100. Bathyal depths (200–3000 m) worldwide will undergo the most significant reductions in pH in all oceans by the year 2100 (0.29 to 0.37 pH units). O2 concentrations will also decline in the bathyal NE Pacific and Southern Oceans, with losses up to 3.7% or more, especially at intermediate depths. Another important environmental parameter, the flux of particulate organic matter to the seafloor, is likely to decline significantly in most oceans, most notably in the abyssal and bathyal Indian Ocean where it is predicted to decrease by 40–55% by the end of the century. Unfortunately, how these major changes will affect deep-seafloor ecosystems is, in some cases, very poorly understood. In this paper, we provide a detailed overview of the impacts of these changing environmental parameters on deep-seafloor ecosystems that will most likely be seen by 2100 in continental margin, abyssal and polar settings. We also consider how these changes may combine with other anthropogenic stressors (e.g., fishing, mineral mining, oil and gas extraction) to further impact deep-seafloor ecosystems and discuss the possible societal implications. 
  • Article
    Global observing needs in the deep ocean
    (Frontiers Media, 2019-03-29) Levin, Lisa A. ; Bett, Brian J. ; Gates, Andrew R. ; Heimbach, Patrick ; Howe, Bruce M. ; Janssen, Felix ; McCurdy, Andrea ; Ruhl, Henry A. ; Snelgrove, Paul V. R. ; Stocks, Karen ; Bailey, David ; Baumann-Pickering, Simone ; Beaverson, Chris ; Benfield, Mark C. ; Booth, David J. ; Carreiro-Silva, Marina ; Colaço, Ana ; Eblé, Marie C. ; Fowler, Ashley M. ; Gjerde, Kristina M. ; Jones, Daniel O. B. ; Katsumata, Katsuro ; Kelley, Deborah S. ; Le Bris, Nadine ; Leonardi, Alan P. ; Lejzerowicz, Franck ; Macreadie, Peter I. ; McLean, Dianne ; Meitz, Fred ; Morato, Telmo ; Netburn, Amanda ; Pawlowski, Jan ; Smith, Craig R. ; Sun, Song ; Uchida, Hiroshi ; Vardaro, Michael F. ; Venkatesan, Ramasamy ; Weller, Robert A.
    The deep ocean below 200 m water depth is the least observed, but largest habitat on our planet by volume and area. Over 150 years of exploration has revealed that this dynamic system provides critical climate regulation, houses a wealth of energy, mineral, and biological resources, and represents a vast repository of biological diversity. A long history of deep-ocean exploration and observation led to the initial concept for the Deep-Ocean Observing Strategy (DOOS), under the auspices of the Global Ocean Observing System (GOOS). Here we discuss the scientific need for globally integrated deep-ocean observing, its status, and the key scientific questions and societal mandates driving observing requirements over the next decade. We consider the Essential Ocean Variables (EOVs) needed to address deep-ocean challenges within the physical, biogeochemical, and biological/ecosystem sciences according to the Framework for Ocean Observing (FOO), and map these onto scientific questions. Opportunities for new and expanded synergies among deep-ocean stakeholders are discussed, including academic-industry partnerships with the oil and gas, mining, cable and fishing industries, the ocean exploration and mapping community, and biodiversity conservation initiatives. Future deep-ocean observing will benefit from the greater integration across traditional disciplines and sectors, achieved through demonstration projects and facilitated reuse and repurposing of existing deep-sea data efforts. We highlight examples of existing and emerging deep-sea methods and technologies, noting key challenges associated with data volume, preservation, standardization, and accessibility. Emerging technologies relevant to deep-ocean sustainability and the blue economy include novel genomics approaches, imaging technologies, and ultra-deep hydrographic measurements. Capacity building will be necessary to integrate capabilities into programs and projects at a global scale. Progress can be facilitated by Open Science and Findable, Accessible, Interoperable, Reusable (FAIR) data principles and converge on agreed to data standards, practices, vocabularies, and registries. We envision expansion of the deep-ocean observing community to embrace the participation of academia, industry, NGOs, national governments, international governmental organizations, and the public at large in order to unlock critical knowledge contained in the deep ocean over coming decades, and to realize the mutual benefits of thoughtful deep-ocean observing for all elements of a sustainable ocean.
  • Article
    The distribution of benthic biomass in hadal trenches : a modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor
    (Elsevier, 2015-02-19) Ichino, Matteo C. ; Clark, Malcolm R. ; Drazen, Jeffrey C. ; Jamieson, Alan ; Jones, Daniel O. B. ; Martin, Adrian P. ; Rowden, Ashley A. ; Shank, Timothy M. ; Yancey, Paul H. ; Ruhl, Henry A.
    Most of our knowledge about deep-sea habitats is limited to bathyal (200–3000 m) and abyssal depths (3000–6000 m), while relatively little is known about the hadal zone (6000–11,000 m). The basic paradigm for the distribution of deep seafloor biomass suggests that the reduction in biomass and average body size of benthic animals along depth gradients is mainly related to surface productivity and remineralisation of sinking particulate organic carbon with depth. However, there is evidence that this pattern is somewhat reversed in hadal trenches by the funnelling of organic sediments, which would result in increased food availability along the axis of the trenches and towards their deeper regions. Therefore, despite the extreme hydrostatic pressure and remoteness from the pelagic food supply, it is hypothesized that biomass can increase with depth in hadal trenches. We developed a numerical model of gravitational lateral sediment transport along the seafloor as a function of slope, using the Kermadec Trench, near New Zealand, as a test environment. We propose that local topography (at a scale of tens of kilometres) and trench shape can be used to provide useful estimates of local accumulation of food and, therefore, patterns of benthic biomass. Orientation and steepness of local slopes are the drivers of organic sediment accumulation in the model, which result in higher biomass along the axis of the trench, especially in the deepest spots, and lower biomass on the slopes, from which most sediment is removed. The model outputs for the Kermadec Trench are in agreement with observations suggesting the occurrence of a funnelling effect and substantial spatial variability in biomass inside a trench. Further trench surveys will be needed to determine the degree to which seafloor currents are important compared with the gravity-driven transport modelled here. These outputs can also benefit future hadal investigations by highlighting areas of potential biological interest, on which to focus sampling effort. Comprehensive exploration of hadal trenches will, in turn, provide datasets for improving the model parameters and increasing predictive power.
  • Article
    Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk
    (Copernicus Publications on behalf of the European Geosciences Union, 2014-12-11) Gehlen, M. ; Seferian, Roland ; Jones, Daniel O. B. ; Roy, T. ; Roth, R. ; Barry, James P. ; Bopp, Laurent ; Doney, Scott C. ; Dunne, John P. ; Heinze, Christoph ; Joos, Fortunat ; Orr, James C. ; Resplandy, L. ; Segschneider, J. ; Tjiputra, Jerry
    This study aims to evaluate the potential for impacts of ocean acidification on North Atlantic deep-sea ecosystems in response to IPCC AR5 Representative Concentration Pathways (RCPs). Deep-sea biota is likely highly vulnerable to changes in seawater chemistry and sensitive to moderate excursions in pH. Here we show, from seven fully coupled Earth system models, that for three out of four RCPs over 17% of the seafloor area below 500 m depth in the North Atlantic sector will experience pH reductions exceeding −0.2 units by 2100. Increased stratification in response to climate change partially alleviates the impact of ocean acidification on deep benthic environments. We report on major pH reductions over the deep North Atlantic seafloor (depth >500 m) and at important deep-sea features, such as seamounts and canyons. By 2100, and under the high CO2 scenario RCP8.5, pH reductions exceeding −0.2 (−0.3) units are projected in close to 23% (~15%) of North Atlantic deep-sea canyons and ~8% (3%) of seamounts – including seamounts proposed as sites of marine protected areas. The spatial pattern of impacts reflects the depth of the pH perturbation and does not scale linearly with atmospheric CO2 concentration. Impacts may cause negative changes of the same magnitude or exceeding the current target of 10% of preservation of marine biomes set by the convention on biological diversity, implying that ocean acidification may offset benefits from conservation/management strategies relying on the regulation of resource exploitation.
  • Article
    Global variability in seawater Mg:Ca and Sr:Ca ratios in the modern ocean
    (National Academy of Sciences, 2020-07-17) Lebrato, Mario ; Garbe-Schonberg, Dieter ; Müller, Marius N. ; Blanco-Ameijeiras, Sonia ; Feely, Richard A. ; Lorenzoni, Laura ; Molinero, Juan-Carlos ; Bremer, Karen ; Jones, Daniel O. B. ; Iglesias-Rodriguez, M. Debora ; Greeley, Dana ; Lamare, Miles D. ; Paulmier, Aurelien ; Graco, Michelle ; Cartes, Joan ; Barcelos e Ramos, Joana ; de Lara, Ana ; Sanchez-Leal, Ricardo ; Jimenez, Paz ; Paparazzo, Flavio E. ; Hartman, Susan ; Westernströer, Ulrike ; Küter, Marie ; Benavides, Roberto ; da Silva, Armindo F. ; Bell, Steven ; Payne, Chris ; Olafsdottir, Solveig R. ; Robinson, Kelly ; Jantunen, Liisa M. ; Korablev, Alexander ; Webster, Richard J. ; Jones, Elizabeth M. ; Gilg, Olivier ; Bailly du Bois, Pascal ; Beldowski, Jacek ; Ashjian, Carin J. ; Yahia, Nejib D. ; Twining, Benjamin S. ; Chen, Xue-Gang ; Tseng, Li-Chun ; Hwang, Jiang-Shiou ; Dahms, Hans-Uwe ; Oschlies, Andreas
    Seawater Mg:Ca and Sr:Ca ratios are biogeochemical parameters reflecting the Earth–ocean–atmosphere dynamic exchange of elements. The ratios’ dependence on the environment and organisms' biology facilitates their application in marine sciences. Here, we present a measured single-laboratory dataset, combined with previous data, to test the assumption of limited seawater Mg:Ca and Sr:Ca variability across marine environments globally. High variability was found in open-ocean upwelling and polar regions, shelves/neritic and river-influenced areas, where seawater Mg:Ca and Sr:Ca ratios range from ∼4.40 to 6.40 mmol:mol and ∼6.95 to 9.80 mmol:mol, respectively. Open-ocean seawater Mg:Ca is semiconservative (∼4.90 to 5.30 mol:mol), while Sr:Ca is more variable and nonconservative (∼7.70 to 8.80 mmol:mol); both ratios are nonconservative in coastal seas. Further, the Ca, Mg, and Sr elemental fluxes are connected to large total alkalinity deviations from International Association for the Physical Sciences of the Oceans (IAPSO) standard values. Because there is significant modern seawater Mg:Ca and Sr:Ca ratios variability across marine environments we cannot absolutely assume that fossil archives using taxa-specific proxies reflect true global seawater chemistry but rather taxa- and process-specific ecosystem variations, reflecting regional conditions. This variability could reconcile secular seawater Mg:Ca and Sr:Ca ratio reconstructions using different taxa and techniques by assuming an error of 1 to 1.50 mol:mol, and 1 to 1.90 mmol:mol, respectively. The modern ratios’ variability is similar to the reconstructed rise over 20 Ma (Neogene Period), nurturing the question of seminonconservative behavior of Ca, Mg, and Sr over modern Earth geological history with an overlooked environmental effect.