Farrar
J. Thomas
Farrar
J. Thomas
No Thumbnail Available
Search Results
Now showing
1 - 20 of 20
-
ArticleA Ka-band wind Geophysical Model Function using doppler scatterometer measurements from the Air-Sea Interaction Tower experiment(MDPI, 2022-04-26) Polverari, Federica ; Wineteer, Alexander ; Rodríguez, Ernesto ; Perkovic-Martin, Dragana ; Siqueira, Paul ; Farrar, J. Thomas ; Adam, Max ; Closa Tarrés, Marc ; Edson, James B.Physical understanding and modeling of Ka-band ocean surface backscatter is challenging due to a lack of measurements. In the framework of the NASA Earth Ventures Suborbital-3 Submesoscale Ocean Dynamics Experiment (S-MODE) mission, a Ka-Band Ocean continuous wave Doppler Scatterometer (KaBODS) built by the University of Massachusetts, Amherst (UMass) was installed on the Woods Hole Oceanographic Institution (WHOI) Air-Sea Interaction Tower. Together with ASIT anemometers, a new data set of Ka-band ocean surface backscatter measurements along with surface wind/wave and weather parameters was collected. In this work, we present the KaBODS instrument and an empirical Ka-band wind Geophysical Model Function (GMF), the so-called ASIT GMF, based on the KaBODS data collected over a period of three months, from October 2019 to January 2020, for incidence angles ranging between 40° and 68°. The ASIT GMF results are compared with an existing Ka-band wind GMF developed from data collected during a tower experiment conducted over the Black Sea. The two GMFs show differences in terms of wind speed and wind direction sensitivity. However, they are consistent in the values of the standard deviation of the model residuals. This suggests an intrinsic geophysical variability characterizing the Ka-band surface backscatter. The observed variability does not significantly change when filtering out swell-dominated data, indicating that the long-wave induced backscatter modulation is not the primary source of the KaBODS backscatter variability. We observe evidence of wave breaking events, which increase the skewness of the backscatter distribution in linear space, consistent with previous studies. Interestingly, a better agreement is seen between the GMFs and the actual data at an incidence angle of 60° for both GMFs, and the statistical analysis of the model residuals shows a reduced backscatter variability at this incidence angle. This study shows that the ASIT data set is a valuable reference for studies of Ka-band backscatter. Further investigations are on-going to fully characterize the observed variability and its implication in the wind GMF development.
-
ArticleThe effects of uncorrelated measurement noise on SWOT estimates of sea-surface height, velocity and vorticity(American Meteorological Society, 2022-07-01) Chelton, Dudley B. ; Samelson, Roger M. ; Farrar, J. ThomasThe Ka-band Radar Interferometer (KaRIn) on the Surface Water and Ocean Topography (SWOT) satellite will revolutionize satellite altimetry by measuring sea surface height (SSH) with unprecedented accuracy and resolution across two 50-km swaths separated by a 20-km gap. The original plan to provide an SSH product with a footprint diameter of 1 km has changed to providing two SSH data products with footprint diameters of 0.5 and 2 km. The swath-averaged standard deviations and wavenumber spectra of the uncorrelated measurement errors for these footprints are derived from the SWOT science requirements that are expressed in terms of the wavenumber spectrum of SSH after smoothing with a filter cutoff wavelength of 15 km. The availability of two-dimensional fields of SSH within the measurement swaths will provide the first spaceborne estimates of instantaneous surface velocity and vorticity through the geostrophic equations. The swath-averaged standard deviations of the noise in estimates of velocity and vorticity derived by propagation of the uncorrelated SSH measurement noise through the finite difference approximations of the derivatives are shown to be too large for the SWOT data products to be used directly in most applications, even for the coarsest footprint diameter of 2 km. It is shown from wavenumber spectra and maps constructed from simulated SWOT data that additional smoothing will be required for most applications of SWOT estimates of velocity and vorticity. Equations are presented for the swath-averaged standard deviations and wavenumber spectra of residual noise in SSH and geostrophically computed velocity and vorticity after isotropic two-dimensional smoothing for any user-defined smoother and filter cutoff wavelength of the smoothing.
-
ArticleEffects of grid spacing on high-frequency precipitation variance in coupled high-resolution global ocean–atmosphere models(Springer, 2022-03-29) Light, Charles X. ; Arbic, Brian K. ; Martin, Paige E. ; Brodeau, Laurent ; Farrar, J. Thomas ; Griffies, Stephen M. ; Kirtman, Benjamin ; Laurindo, Lucas ; Menemenlis, Dimitris ; Molod, Andrea ; Nelson, Arin D. ; Nyadjro, Ebenezer ; O’Rourke, Amanda K. ; Shriver, Jay F. ; Siqueira, Leo ; Small, R. Justin ; Strobach, EhudHigh-frequency precipitation variance is calculated in 12 different free-running (non-data-assimilative) coupled high resolution atmosphere–ocean model simulations, an assimilative coupled atmosphere–ocean weather forecast model, and an assimilative reanalysis. The results are compared with results from satellite estimates of precipitation and rain gauge observations. An analysis of irregular sub-daily fluctuations, which was applied by Covey et al. (Geophys Res Lett 45:12514–12522, 2018. https://doi.org/10.1029/2018GL078926) to satellite products and low-resolution climate models, is applied here to rain gauges and higher-resolution models. In contrast to lower-resolution climate simulations, which Covey et al. (2018) found to be lacking with respect to variance in irregular sub-daily fluctuations, the highest-resolution simulations examined here display an irregular sub-daily fluctuation variance that lies closer to that found in satellite products. Most of the simulations used here cannot be analyzed via the Covey et al. (2018) technique, because they do not output precipitation at sub-daily intervals. Thus the remainder of the paper focuses on frequency power spectral density of precipitation and on cumulative distribution functions over time scales (2–100 days) that are still relatively “high-frequency” in the context of climate modeling. Refined atmospheric or oceanic model grid spacing is generally found to increase high-frequency precipitation variance in simulations, approaching the values derived from observations. Mesoscale-eddy-rich ocean simulations significantly increase precipitation variance only when the atmosphere grid spacing is sufficiently fine (< 0.5°). Despite the improvements noted above, all of the simulations examined here suffer from the “drizzle effect”, in which precipitation is not temporally intermittent to the extent found in observations.
-
ArticleThe barrier layer effect on the heat and freshwater balance from moored observations in the eastern Pacific fresh pool(American Meteorological Society, 2022-07-27) Katsura, Shota ; Sprintall, Janet ; Farrar, J. Thomas ; Zhang, Dongxiao ; Cronin, Meghan F.Formation and evolution of barrier layers (BLs) and associated temperature inversions (TIs) were investigated using a 1-yr time series of oceanic and air–sea surface observations from three moorings deployed in the eastern Pacific fresh pool. BL thickness and TI amplitude showed a seasonality with maxima in boreal summer and autumn when BLs were persistently present. Mixed layer salinity (MLS) and mixed layer temperature (MLT) budgets were constructed to investigate the formation mechanism of BLs and TIs. The MLS budget showed that BLs were initially formed in response to horizontal advection of freshwater in boreal summer and then primarily maintained by precipitation. The MLT budget revealed that penetration of shortwave radiation through the mixed layer base is the dominant contributor to TI formation through subsurface warming. Geostrophic advection is a secondary contributor to TI formation through surface cooling. When the BL exists, the cooling effect from entrainment and the warming effect from detrainment are both significantly reduced. In addition, when the BL is associated with the presence of a TI, entrainment works to warm the mixed layer. The presence of BLs makes the shallower mixed layer more sensitive to surface heat and freshwater fluxes, acting to enhance the formation of TIs that increase the subsurface warming via shortwave penetration.
-
ArticleAccuracy of wind observations from open-ocean buoys: correction for flow distortion(American Meteorological Society, 2020-04-20) Schlundt, Michael ; Farrar, J. Thomas ; Bigorre, Sebastien P. ; Plueddemann, Albert J. ; Weller, Robert A.The comparison of equivalent neutral winds obtained from (i) four WHOI buoys in the subtropics and (ii) scatterometer estimates at those locations reveals a root-mean-square (RMS) difference of 0.56–0.76 m s−1. To investigate this RMS difference, different buoy wind error sources were examined. These buoys are particularly well suited to examine two important sources of buoy wind errors because 1) redundant anemometers and a comparison with numerical flow simulations allow us to quantitatively assess flow distortion errors, and 2) 1-min sampling at the buoys allows us to examine the sensitivity of buoy temporal sampling/averaging in the buoy–scatterometer comparisons. The interanemometer difference varies as a function of wind direction relative to the buoy wind vane and is consistent with the effects of flow distortion expected based on numerical flow simulations. Comparison between the anemometers and scatterometer winds supports the interpretation that the interanemometer disagreement, which can be up to 5% of the wind speed, is due to flow distortion. These insights motivate an empirical correction to the individual anemometer records and subsequent comparison with scatterometer estimates show good agreement.
-
ArticleLongwave radiation corrections for the OMNI Buoy Network(American Meteorological Society, 2022-02-01) Joseph, Jossia K. ; Tandon, Amit ; Venkatesan, Ramasamy ; Farrar, J. Thomas ; Weller, Robert A.The inception of a moored buoy network in the northern Indian Ocean in 1997 paved the way for systematic collection of long-term time series observations of meteorological and oceanographic parameters. This buoy network was revamped in 2011 with Ocean Moored buoy Network for north Indian Ocean (OMNI) buoys fitted with additional sensors to better quantify the air–sea fluxes. An intercomparison of OMNI buoy measurements with the nearby Woods Hole Oceanographic Institution (WHOI) mooring during the year 2015 revealed an overestimation of downwelling longwave radiation (LWR↓). Analysis of the OMNI and WHOI radiation sensors at a test station at National Institute of Ocean Technology (NIOT) during 2019 revealed that the accurate and stable amplification of the thermopile voltage records along with the customized datalogger in the WHOI system results in better estimations of LWR↓. The offset in NIOT measured LWR↓ is estimated first by segregating the LWR↓ during clear-sky conditions identified using the downwelling shortwave radiation measurements from the same test station, and second, finding the offset by taking the difference with expected theoretical clear-sky LWR↓. The corrected LWR↓ exhibited good agreement with that of collocated WHOI measurements, with a correlation of 0.93. This method is applied to the OMNI field measurements and again compared with the nearby WHOI mooring measurements, exhibiting a better correlation of 0.95. This work has led to the revamping of radiation measurements in OMNI buoys and provides a reliable method to correct past measurements and improve estimation of air–sea fluxes in the Indian Ocean.
-
ArticleOn the development of SWOT in situ calibration/validation for short-wavelength ocean topography(American Meteorological Society, 2022-05-01) Wang, Jinbo ; Fu, Lee-Lueng ; Haines, Bruce ; Lankhorst, Matthias ; Lucas, Andrew J. ; Farrar, J. Thomas ; Send, Uwe ; Meinig, Christian ; Schofield, Oscar M. E. ; Ray, Richard D.The future Surface Water and Ocean Topography (SWOT) mission aims to map sea surface height (SSH) in wide swaths with an unprecedented spatial resolution and subcentimeter accuracy. The instrument performance needs to be verified using independent measurements in a process known as calibration and validation (Cal/Val). The SWOT Cal/Val needs in situ measurements that can make synoptic observations of SSH field over an O(100) km distance with an accuracy matching the SWOT requirements specified in terms of the along-track wavenumber spectrum of SSH error. No existing in situ observing system has been demonstrated to meet this challenge. A field campaign was conducted during September 2019–January 2020 to assess the potential of various instruments and platforms to meet the SWOT Cal/Val requirement. These instruments include two GPS buoys, two bottom pressure recorders (BPR), three moorings with fixed conductivity–temperature–depth (CTD) and CTD profilers, and a glider. The observations demonstrated that 1) the SSH (hydrostatic) equation can be closed with 1–3 cm RMS residual using BPR, CTD mooring and GPS SSH, and 2) using the upper-ocean steric height derived from CTD moorings enable subcentimeter accuracy in the California Current region during the 2019/20 winter. Given that the three moorings are separated at 10–20–30 km distance, the observations provide valuable information about the small-scale SSH variability associated with the ocean circulation at frequencies ranging from hourly to monthly in the region. The combined analysis sheds light on the design of the SWOT mission postlaunch Cal/Val field campaign.
-
ArticleHow spice is stirred in the Bay of Bengal(American Meteorological Society, 2020-08-31) Spiro Jaeger, Gualtiero ; MacKinnon, Jennifer A. ; Lucas, Andrew J. ; Shroyer, Emily L. ; Nash, Jonathan D. ; Tandon, Amit ; Farrar, J. Thomas ; Mahadevan, AmalaThe scale-dependent variance of tracer properties in the ocean bears the imprint of the oceanic eddy field. Anomalies in spice (which combines anomalies in temperature T and salinity S on isopycnal surfaces) act as passive tracers beneath the surface mixed layer (ML). We present an analysis of spice distributions along isopycnals in the upper 200 m of the ocean, calculated with over 9000 vertical profiles of T and S measured along ~4800 km of ship tracks in the Bay of Bengal. The data are from three separate research cruises—in the winter monsoon season of 2013 and in the late and early summer monsoon seasons of 2015 and 2018. We present a spectral analysis of horizontal tracer variance statistics on scales ranging from the submesoscale (~1 km) to the mesoscale (~100 km). Isopycnal layers that are closer to the ML-base exhibit redder spectra of tracer variance at scales ≲10 km than is predicted by theories of quasigeostrophic turbulence or frontogenesis. Two plausible explanations are postulated. The first is that stirring by submesoscale motions and shear dispersion by near-inertial waves enhance effective horizontal mixing and deplete tracer variance at horizontal scales ≲10 km in this region. The second is that the spice anomalies are coherent with dynamical properties such as potential vorticity, and not interpretable as passively stirred.
-
ArticleFluxSat: measuring the ocean-atmosphere turbulent exchange of heat and moisture from space(MDPI, 2020-06-03) Gentemann, Chelle L. ; Clayson, Carol A. ; Brown, Shannon ; Lee, Tong ; Parfitt, Rhys ; Farrar, J. Thomas ; Bourassa, Mark A. ; Minnett, Peter J. ; Seo, Hyodae ; Gille, Sarah T. ; Zlotnicki, VictorRecent results using wind and sea surface temperature data from satellites and high-resolution coupled models suggest that mesoscale ocean–atmosphere interactions affect the locations and evolution of storms and seasonal precipitation over continental regions such as the western US and Europe. The processes responsible for this coupling are difficult to verify due to the paucity of accurate air–sea turbulent heat and moisture flux data. These fluxes are currently derived by combining satellite measurements that are not coincident and have differing and relatively low spatial resolutions, introducing sampling errors that are largest in regions with high spatial and temporal variability. Observational errors related to sensor design also contribute to increased uncertainty. Leveraging recent advances in sensor technology, we here describe a satellite mission concept, FluxSat, that aims to simultaneously measure all variables necessary for accurate estimation of ocean–atmosphere turbulent heat and moisture fluxes and capture the effect of oceanic mesoscale forcing. Sensor design is expected to reduce observational errors of the latent and sensible heat fluxes by almost 50%. FluxSat will improve the accuracy of the fluxes at spatial scales critical to understanding the coupled ocean–atmosphere boundary layer system, providing measurements needed to improve weather forecasts and climate model simulations.
-
ArticleMoored turbulence measurements using pulse-coherent doppler sonar(American Meteorological Society, 2021-09-01) Zippel, Seth F. ; Farrar, J. Thomas ; Zappa, Christopher J. ; Miller, Una ; St. Laurent, Louis C. ; Ijichi, Takashi ; Weller, Robert A. ; McRaven, Leah T. ; Nylund, Sven ; Le Bel, DeborahUpper-ocean turbulence is central to the exchanges of heat, momentum, and gases across the air–sea interface and therefore plays a large role in weather and climate. Current understanding of upper-ocean mixing is lacking, often leading models to misrepresent mixed layer depths and sea surface temperature. In part, progress has been limited by the difficulty of measuring turbulence from fixed moorings that can simultaneously measure surface fluxes and upper-ocean stratification over long time periods. Here we introduce a direct wavenumber method for measuring turbulent kinetic energy (TKE) dissipation rates ϵ from long-enduring moorings using pulse-coherent ADCPs. We discuss optimal programming of the ADCPs, a robust mechanical design for use on a mooring to maximize data return, and data processing techniques including phase-ambiguity unwrapping, spectral analysis, and a correction for instrument response. The method was used in the Salinity Processes Upper-Ocean Regional Study (SPURS) to collect two year-long datasets. We find that the mooring-derived TKE dissipation rates compare favorably to estimates made nearby from a microstructure shear probe mounted to a glider during its two separate 2-week missions for O(10−8) ≤ ϵ ≤ O(10−5) m2 s−3. Periods of disagreement between turbulence estimates from the two platforms coincide with differences in vertical temperature profiles, which may indicate that barrier layers can substantially modulate upper-ocean turbulence over horizontal scales of 1–10 km. We also find that dissipation estimates from two different moorings at 12.5 and at 7 m are in agreement with the surface buoyancy flux during periods of strong nighttime convection, consistent with classic boundary layer theory.
-
ArticleEcoCTD for profiling oceanic physical-biological properties from an underway ship(American Meteorological Society, 2020-05-08) Dever, Mathieu ; Freilich, Mara ; Farrar, J. Thomas ; Hodges, Benjamin A. ; Lanagan, Thomas ; Baron, Andrew J. ; Mahadevan, AmalaThe study of ocean dynamics and biophysical variability at submesoscales of O(1) km and O(1) h raises several observational challenges. To address these by underway sampling, we recently developed a towed profiler called the EcoCTD, capable of concurrently measuring both hydrographic and bio-optical properties such as oxygen, chlorophyll fluorescence, and optical backscatter. The EcoCTD presents an attractive alternative to currently used towed platforms due to its light footprint, versatility in the field, and ease of deployment and recovery without cranes or heavy-duty winches. We demonstrate its use for gathering high-quality data at submesoscale spatiotemporal resolution. A dataset of bio-optical and hydrographic properties, collected with the EcoCTD during field trials in 2018, highlights its scientific potential for the study of physical–biological interactions at submesoscales.
-
ArticleAnother note on Rossby wave energy flux(American Meteorological Society, 2020-02-19) Durland, Theodore S. ; Farrar, J. ThomasLonguet-Higgins in 1964 first pointed out that the Rossby wave energy flux as defined by the pressure work is not the same as that defined by the group velocity. The two definitions provide answers that differ by a nondivergent vector. Longuet-Higgins suggested that the problem arose from ambiguity in the definition of energy flux, which only impacts the energy equation through its divergence. Numerous authors have addressed this issue from various perspectives, and we offer one more approach that we feel is more succinct than previous ones, both mathematically and conceptually. We follow the work described by Cai and Huang in 2013 in concluding that there is no need to invoke the ambiguity offered by Longuet-Higgins. By working directly from the shallow-water equations (as opposed to the more involved quasigeostrophic treatment of Cai and Huang), we provide a concise derivation of the nondivergent pressure work and demonstrate that the two energy flux definitions are equivalent when only the divergent part of the pressure work is considered. The difference vector comes from the nondivergent part of the geostrophic pressure work, and the familiar westward component of the Rossby wave group velocity comes from the divergent part of the geostrophic pressure work. In a broadband wave field, the expression for energy flux in terms of a single group velocity is no longer meaningful, but the expression for energy flux in terms of the divergent pressure work is still valid.
-
ArticleParsing the kinetic energy budget of the ocean surface mixed layer(American Geophysical Union, 2022-01-10) Zippel, Seth F. ; Farrar, J. Thomas ; Zappa, Christopher J. ; Plueddemann, Albert J.The total rate of work done on the ocean by the wind is of considerable interest for understanding global energy balances, as the energy from the wind drives ocean currents, grows surface waves, and forces vertical mixing. A large but unknown fraction of this atmospheric energy is dissipated by turbulence in the upper ocean. The focus of this work is twofold. First, we describe a framework for evaluating the vertically integrated turbulent kinetic energy (TKE) equation using measurable quantities from a surface mooring, showing the connection to the atmospheric, mean oceanic, and wave energy. Second, we use this framework to evaluate turbulent energetics in the mixed layer using 10 months of mooring data. This evaluation is made possible by recent advances in estimating TKE dissipation rates from long-enduring moorings. We find that surface fluxes are balanced by TKE dissipation rates in the mixed layer to within a factor of two.
-
ArticleQuasi-biweekly mode of the Asian summer monsoon revealed in Bay of Bengal surface observations(American Geophysical Union, 2020-11-16) Lekha, J. Sree ; Lucas, Andrew J. ; Sukhatme, Jai ; Joseph, Jossia K. ; Ravichandran, M. ; Kumar, N. Suresh ; Farrar, J. Thomas ; Sengupta, DebasisAsian summer monsoon has a planetary‐scale, westward propagating “quasi‐biweekly” mode of variability with a 10–25 day period. Six years of moored observations at 18°N, 89.5°E in the north Bay of Bengal (BoB) reveal distinct quasi‐biweekly variability in sea surface salinity (SSS) during summer and autumn, with peak‐to‐peak amplitude of 3–8 psu. This large‐amplitude SSS variability is not due to variations of surface freshwater flux or river runoff. We show from the moored data, satellite SSS, and reanalyses that surface winds associated with the quasi‐biweekly monsoon mode and embedded weather‐scale systems, drive SSS and coastal sea level variability in 2015 summer monsoon. When winds are calm, geostrophic currents associated with mesoscale ocean eddies transport Ganga‐Brahmaputra‐Meghna river water southward to the mooring, salinity falls, and the ocean mixed layer shallows to 1–10 m. During active (cloudy, windy) spells of quasi‐biweekly monsoon mode, directly wind‐forced surface currents carry river water away to the east and north, leading to increased salinity at the moorings, and rise of sea level by 0.1–0.5 m along the eastern and northern boundary of the bay. During July–August 2015, a shallow pool of low‐salinity river water lies in the northeastern bay. The amplitude of a 20‐day oscillation of sea surface temperature (SST) is two times larger within the fresh pool than in the saltier ocean to the west, although surface heat flux is nearly identical in the two regions. This is direct evidence that spatial‐temporal variations of BoB salinity influences sub‐seasonal SST variations, and possibly SST‐mediated monsoon air‐sea interaction.
-
ArticleLong-distance radiation of Rossby Waves from the equatorial current system(American Meteorological Society, 2021-05-24) Farrar, J. Thomas ; Durland, Theodore S. ; Jayne, Steven R. ; Price, James F.Measurements from satellite altimetry are used to show that sea surface height (SSH) variability throughout much of the North Pacific Ocean is coherent with the SSH signal of the tropical instability waves (TIWs) that result from instabilities of the equatorial currents. This variability has regular phase patterns consistent with freely propagating barotropic Rossby waves radiating energy away from the unstable equatorial currents, and the waves clearly propagate from the equatorial region to at least 30°N. The pattern of SSH variance at TIW frequencies exhibits remarkable patchiness on scales of hundreds of kilometers, which we interpret as being due to the combined effects of wave reflection, refraction, and interference. North of 40°N, more than 6000 km from the unstable equatorial currents, the SSH field remains coherent with the near-equatorial SSH variability, but it is not as clear whether the variability at the higher latitudes is a simple result of barotropic wave radiation from the tropical instability waves. Even more distant regions, as far north as the Aleutian Islands off of Alaska and the Kamchatka Peninsula of eastern Russia, have SSH variability that is significantly coherent with the near-equatorial instabilities. The variability is not well represented in the widely used gridded SSH data product commonly referred to as the AVISO or DUACS product, and this appears to be a result of spatial variations in the filtering properties of the objective mapping scheme.
-
ArticleScaling of moored surface ocean turbulence measurements in the Southeast Pacific Ocean(American Geophysical Union, 2022-12-17) Miller, Una Kim ; Zappa, Christopher J. ; Zippel, Seth F. ; Farrar, J. Thomas ; Weller, Robert A.Estimates of turbulence kinetic energy (TKE) dissipation rate (ε) are key in understanding how heat, gas, and other climate‐relevant properties are transferred across the air‐sea interface and mixed within the ocean. A relatively new method involving moored pulse‐coherent acoustic Doppler current profilers (ADCPs) allows for estimates of ε with concurrent surface flux and wave measurements across an extensive length of time and range of conditions. Here, we present 9 months of moored estimates of ε at a fixed depth of 8.4 m at the Stratus mooring site (20°S, 85°W). We find that turbulence regimes are quantified similarly using the Obukhov length scale (LM) $({L}_{M})$ and the newer Langmuir stability length scale (LL) $({L}_{L})$, suggesting that ocean‐side friction velocity u∗ $\left({u}_{\ast }\right)$ implicitly captures the influence of Langmuir turbulence at this site. This is illustrated by a strong correlation between surface Stokes drift us $\left({u}_{s}\right)$ and u∗ ${u}_{\ast }$ that is likely facilitated by the steady Southeast trade winds regime. In certain regimes, u∗3κz $\frac{{u}_{\ast }^{3}}{\kappa z}$, where κ $\kappa $ is the von Kármán constant and z $z$ is instrument depth, and surface buoyancy flux capture our estimates of ε $\varepsilon $ well, collapsing data points near unity. We find that a newer Langmuir turbulence scaling, based on us ${u}_{s}$ and u∗ ${u}_{\ast }$, scales ε well at times but is overall less consistent than u∗3κz $\frac{{u}_{\ast }^{3}}{\kappa z}$. Monin‐Obukhov similarity theory (MOST) relationships from prior studies in a variety of aquatic and atmospheric settings largely agree with our data in conditions where convection and wind‐driven current shear are both significant sources of TKE, but diverge in other regimes.
-
ArticleFrontal convergence and vertical velocity measured by drifters in the Alboran Sea(American Geophysical Union, 2021-03-24) Tarry, Daniel R. ; Essink, Sebastian ; Pascual, Ananda ; Ruiz, Simon ; Poulain, Pierre Marie ; Ozgokmen, Tamay M. ; Centurioni, Luca R. ; Farrar, J. Thomas ; Shcherbina, Andrey Y. ; Mahadevan, Amala ; D'Asaro, Eric A.Horizontal and vertical motions associated with mesoscale (10–100 km) and submesoscale (1–10 km) features, such as fronts, meanders, eddies, and filaments, play a critical role in redistributing physical and biogeochemical properties in the ocean. This study makes use of a multiplatform data set of 82 drifters, a Lagrangian float, and profile timeseries of temperature and salinity, obtained in a ∼1-m/s semipermanent frontal jet in the Alboran Sea as part of CALYPSO (Coherent Lagrangian Pathways from the Surface Ocean to Interior). Drifters drogued at ∼1-m and 15-m depth capture the mesoscale and submesoscale circulation aligning along the perimeter of fronts due to horizontal shear. Clusters of drifters are used to estimate the kinematic properties, such as vorticity and divergence, of the flow by fitting a bivariate plane to the horizontal drifter velocities. Clusters with submesoscale length scales indicate normalized vorticity ζ/f > 1 with Coriolis frequency f and normalized divergence of (1) occurring in patches along the front, with error variance around 10%. By computing divergence from drifter clusters at two different depths, we estimate minimum vertical velocity of (−100 m day−1) in the upper 10 m of the water column. These results are at least twice as large as previous estimates of vertical velocity in the region. Location, magnitude, and timing of the convergence are consistent with behavior of a Lagrangian float subducting in the center of a drifter cluster. These results improve our understanding of frontal subduction and quantify convergence and vertical velocity using Lagrangian tools.
-
ArticleDrifter observations reveal intense vertical velocity in a surface ocean front(American Geophysical Union, 2022-09-03) Tarry, Daniel R. ; Ruiz, Simon ; Johnston, T. M. Shaun ; Poulain, Pierre Marie ; Ozgokmen, Tamay M. ; Centurioni, Luca R. ; Berta, Maristella ; Esposito, Giovanni ; Farrar, J. Thomas ; Mahadevan, Amala ; Pascual, AnandaMeasuring vertical motions represent a challenge as they are typically 3–4 orders of magnitude smaller than the horizontal velocities. Here, we show that surface vertical velocities are intensified at submesoscales and are dominated by high frequency variability. We use drifter observations to calculate divergence and vertical velocities in the upper 15 m of the water column at two different horizontal scales. The drifters, deployed at the edge of a mesoscale eddy in the Alboran Sea, show an area of strong convergence (urn:x-wiley:00948276:media:grl64766:grl64766-math-0001(f)) associated with vertical velocities of −100 m day−1. This study shows that a multilayered-drifter array can be an effective tool for estimating vertical velocity near the ocean surface.
-
ArticleInertial oscillations and frontal processes in an Alboran Sea Jet: effects on divergence and vertical transport(American Geophysical Union, 2023-02-15) Esposito, Giovanni ; Donnet, Sebastien ; Berta, Maristella ; Shcherbina, Andrey Y. ; Freilich, Mara ; Centurioni, Luca ; D’Asaro, Eric A. ; Farrar, J. Thomas ; Johnston, T. M. Shaun ; Mahadevan, Amala ; Özgökmen, Tamay ; Pascual, Ananda ; Poulain, Pierre‐Marie ; Ruiz, Simón ; Tarry, Daniel R. ; Griffa, AnnalisaVertical transport pathways in the ocean are still only partially understood despite their importance for biogeochemical, pollutant, and climate applications. Detailed measurements of a submesoscale frontal jet in the Alboran Sea (Mediterranean Sea) during a period of highly variable winds were made using cross‐frontal velocity, density sections and dense arrays of surface drifters deployed across the front. The measurements show divergences as large as ±f implying vertical velocities of order 100 m/day for a ≈ 20 m thick surface layer. Over the 20 hr of measurement, the divergences made nearly one complete oscillation, suggesting an important role for near‐inertial oscillations. A wind‐forced slab model modified by the observed background frontal structure and with initial conditions matched to the data produces divergence oscillations and pattern compatible with that observed. Significant differences, though, are found in terms of mean divergence, with the data showing a prevalence of negative, convergent values. Despite the limitations in data sampling and model uncertainties, this suggests the contribution of other dynamical processes. Turbulent boundary layer processes are discussed, as a contributor to enhance the observed convergent phase. Water mass properties suggest that symmetric instabilities might also be present but do not play a crucial role, while downward stirring along displaced isopycnals is observed.Plain Language SummaryVertical transport pathways are essential for the exchange of properties between the surface and the deeper layers of the ocean. Despite the recognized role of vertical dynamics in biogeochemical and climate applications, it is still only partially understood. This is principally due to observational challenges. Vertical transport pathways are generally very localized processes and are associated with vertical velocities comparable to instrumental uncertainty. In this work, we focus on vertical processes occurring along a front at the edge of an eddy in the Mediterranean Sea. The paper combines the analysis of multiple observations with the use of an idealized numerical model to isolate and study surface divergence patterns. These analyses allow the investigation of the role of the wind forcing and of small‐scale ocean processes in vertical transport.Key PointsDivergence and vertical velocity oscillations are observed at a submesoscale front on the edge of an anticyclone in the Alboran SeaNear‐inertial oscillations play a major role in the observed divergence oscillatory pattern as suggested by a modified slab model of a wind‐forced frontal jetTurbulent boundary layer processes and symmetric instabilities can contribute to differences between modeled and observed vertical dynamics
-
ArticleBay of Bengal intraseasonal oscillations and the 2018 monsoon onset(American Meteorological Society, 2021-10-01) Shroyer, Emily L. ; Tandon, Amit ; Sengupta, Debasis ; Fernando, Harindra J. S. ; Lucas, Andrew J. ; Farrar, J. Thomas ; Chattopadhyay, Rajib ; de Szoeke, Simon P. ; Flatau, Maria ; Rydbeck, Adam ; Wijesekera, Hemantha W. ; McPhaden, Michael J. ; Seo, Hyodae ; Subramanian, Aneesh C. ; Venkatesan, Ramasamy ; Joseph, Jossia K. ; Ramsundaram, S. ; Gordon, Arnold L. ; Bohman, Shannon M. ; Pérez, Jaynise ; Simoes-Sousa, Iury T. ; Jayne, Steven R. ; Todd, Robert E. ; Bhat, G. S. ; Lankhorst, Matthias ; Schlosser, Tamara L. ; Adams, Katherine ; Jinadasa, S. U. P. ; Mathur, Manikandan ; Mohapatra, Mrutyunjay ; Rama Rao, E. Pattabhi ; Sahai, Atul Kumar ; Sharma, Rashmi ; Lee, Craig ; Rainville, Luc ; Cherian, Deepak A. ; Cullen, Kerstin ; Centurioni, Luca R. ; Hormann, Verena ; MacKinnon, Jennifer A. ; Send, Uwe ; Anutaliya, Arachaporn ; Waterhouse, Amy F. ; Black, Garrett S. ; Dehart, Jeremy A. ; Woods, Kaitlyn M. ; Creegan, Edward ; Levy, Gad ; Kantha, Lakshmi ; Subrahmanyam, BulusuIn the Bay of Bengal, the warm, dry boreal spring concludes with the onset of the summer monsoon and accompanying southwesterly winds, heavy rains, and variable air–sea fluxes. Here, we summarize the 2018 monsoon onset using observations collected through the multinational Monsoon Intraseasonal Oscillations in the Bay of Bengal (MISO-BoB) program between the United States, India, and Sri Lanka. MISO-BoB aims to improve understanding of monsoon intraseasonal variability, and the 2018 field effort captured the coupled air–sea response during a transition from active-to-break conditions in the central BoB. The active phase of the ∼20-day research cruise was characterized by warm sea surface temperature (SST > 30°C), cold atmospheric outflows with intermittent heavy rainfall, and increasing winds (from 2 to 15 m s−1). Accumulated rainfall exceeded 200 mm with 90% of precipitation occurring during the first week. The following break period was both dry and clear, with persistent 10–12 m s−1 wind and evaporation of 0.2 mm h−1. The evolving environmental state included a deepening ocean mixed layer (from ∼20 to 50 m), cooling SST (by ∼1°C), and warming/drying of the lower to midtroposphere. Local atmospheric development was consistent with phasing of the large-scale intraseasonal oscillation. The upper ocean stores significant heat in the BoB, enough to maintain SST above 29°C despite cooling by surface fluxes and ocean mixing. Comparison with reanalysis indicates biases in air–sea fluxes, which may be related to overly cool prescribed SST. Resolution of such biases offers a path toward improved forecasting of transition periods in the monsoon.