Vardaro Michael F.

No Thumbnail Available
Last Name
Vardaro
First Name
Michael F.
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    The Ocean Observatories Initiative
    (The Oceanography Society, 2018-02-09) Smith, Leslie M. ; Barth, John A. ; Kelley, Deborah S. ; Plueddemann, Albert J. ; Rodero, Ivan ; Ulses, Greg A. ; Vardaro, Michael F. ; Weller, Robert A.
    The Ocean Observatories Initiative (OOI) is an integrated suite of instrumented platforms and discrete instruments that measure physical, chemical, geological, and biological properties from the seafloor to the sea surface. The OOI provides data to address large-scale scientific challenges such as coastal ocean dynamics, climate and ecosystem health, the global carbon cycle, and linkages among seafloor volcanism and life. The OOI Cyberinfrastructure currently serves over 250 terabytes of data from the arrays. These data are freely available to users worldwide, changing the way scientists and the broader community interact with the ocean, and permitting ocean research and inquiry at scales of centimeters to kilometers and seconds to decades.
  • Article
    The Deep Ocean Observing Strategy: addressing global challenges in the deep sea through collaboration
    (Marine Technology Society, 2022-06-08) Smith, Leslie M. ; Cimoli, Laura ; LaScala-Gruenewald, Diana ; Pachiadaki, Maria G. ; Phillips, Brennan T. ; Pillar, Helen R. ; Stopa, Justin ; Baumann-Pickering, Simone ; Beaulieu, Stace E. ; Bell, Katherine L. C. ; Harden-Davies, Harriet ; Gjerde, Kristina M. ; Heimbach, Patrick ; Howe, Bruce M. ; Janssen, Felix ; Levin, Lisa A. ; Ruhl, Henry A. ; Soule, S. Adam ; Stocks, Karen ; Vardaro, Michael F. ; Wright, Dawn J.
    The Deep Ocean Observing Strategy (DOOS) is an international, community-driven initiative that facilitates collaboration across disciplines and fields, elevates a diverse cohort of early career researchers into future leaders, and connects scientific advancements to societal needs. DOOS represents a global network of deep-ocean observing, mapping, and modeling experts, focusing community efforts in the support of strong science, policy, and planning for sustainable oceans. Its initiatives work to propose deep-sea Essential Ocean Variables; assess technology development; develop shared best practices, standards, and cross-calibration procedures; and transfer knowledge to policy makers and deep-ocean stakeholders. Several of these efforts align with the vision of the UN Ocean Decade to generate the science we need to create the deep ocean we want. DOOS works toward (1) a healthy and resilient deep ocean by informing science-based conservation actions, including optimizing data delivery, creating habitat and ecological maps of critical areas, and developing regional demonstration projects; (2) a predicted deep ocean by strengthening collaborations within the modeling community, determining needs for interdisciplinary modeling and observing system assessment in the deep ocean; (3) an accessible deep ocean by enhancing open access to innovative low-cost sensors and open-source plans, making deep-ocean data Findable, Accessible, Interoperable, and Reusable, and focusing on capacity development in developing countries; and finally (4) an inspiring and engaging deep ocean by translating science to stakeholders/end users and informing policy and management decisions, including in international waters.
  • Article
    Global observing needs in the deep ocean
    (Frontiers Media, 2019-03-29) Levin, Lisa A. ; Bett, Brian J. ; Gates, Andrew R. ; Heimbach, Patrick ; Howe, Bruce M. ; Janssen, Felix ; McCurdy, Andrea ; Ruhl, Henry A. ; Snelgrove, Paul V. R. ; Stocks, Karen ; Bailey, David ; Baumann-Pickering, Simone ; Beaverson, Chris ; Benfield, Mark C. ; Booth, David J. ; Carreiro-Silva, Marina ; Colaço, Ana ; Eblé, Marie C. ; Fowler, Ashley M. ; Gjerde, Kristina M. ; Jones, Daniel O. B. ; Katsumata, Katsuro ; Kelley, Deborah S. ; Le Bris, Nadine ; Leonardi, Alan P. ; Lejzerowicz, Franck ; Macreadie, Peter I. ; McLean, Dianne ; Meitz, Fred ; Morato, Telmo ; Netburn, Amanda ; Pawlowski, Jan ; Smith, Craig R. ; Sun, Song ; Uchida, Hiroshi ; Vardaro, Michael F. ; Venkatesan, Ramasamy ; Weller, Robert A.
    The deep ocean below 200 m water depth is the least observed, but largest habitat on our planet by volume and area. Over 150 years of exploration has revealed that this dynamic system provides critical climate regulation, houses a wealth of energy, mineral, and biological resources, and represents a vast repository of biological diversity. A long history of deep-ocean exploration and observation led to the initial concept for the Deep-Ocean Observing Strategy (DOOS), under the auspices of the Global Ocean Observing System (GOOS). Here we discuss the scientific need for globally integrated deep-ocean observing, its status, and the key scientific questions and societal mandates driving observing requirements over the next decade. We consider the Essential Ocean Variables (EOVs) needed to address deep-ocean challenges within the physical, biogeochemical, and biological/ecosystem sciences according to the Framework for Ocean Observing (FOO), and map these onto scientific questions. Opportunities for new and expanded synergies among deep-ocean stakeholders are discussed, including academic-industry partnerships with the oil and gas, mining, cable and fishing industries, the ocean exploration and mapping community, and biodiversity conservation initiatives. Future deep-ocean observing will benefit from the greater integration across traditional disciplines and sectors, achieved through demonstration projects and facilitated reuse and repurposing of existing deep-sea data efforts. We highlight examples of existing and emerging deep-sea methods and technologies, noting key challenges associated with data volume, preservation, standardization, and accessibility. Emerging technologies relevant to deep-ocean sustainability and the blue economy include novel genomics approaches, imaging technologies, and ultra-deep hydrographic measurements. Capacity building will be necessary to integrate capabilities into programs and projects at a global scale. Progress can be facilitated by Open Science and Findable, Accessible, Interoperable, Reusable (FAIR) data principles and converge on agreed to data standards, practices, vocabularies, and registries. We envision expansion of the deep-ocean observing community to embrace the participation of academia, industry, NGOs, national governments, international governmental organizations, and the public at large in order to unlock critical knowledge contained in the deep ocean over coming decades, and to realize the mutual benefits of thoughtful deep-ocean observing for all elements of a sustainable ocean.
  • Article
    Co-designing a multidisciplinary deep-ocean observing programme at the Mid-Atlantic Ridge in the Azores region: a blueprint for synergy in deep ocean research and conservation
    (Oxford University Press, 2022-11-02) Pachiadaki, Maria G. ; Janssen, Felix ; Carreiro-Silva, Marina ; Morato, Telmo ; Carreira, Gilberto P ; Frazão, Helena C ; Heimbach, Patrick ; Iglesias, Isabel ; Muller-Karger, Frank E ; Santos, Miguel M ; Smith, Leslie M ; Vardaro, Michael F ; Visser, Fleur ; Waniek, Joanna J ; Zinkann, Ann-Christine ; Colaço, Ana
    Under the umbrella of the Deep Ocean Observing Strategy (DOOS) and the All-Atlantic Ocean Observing System (AtlantOS), researchers at the Okeanos—University of the Azores, local stakeholders and authorities, and the deep ocean science community are adopting a co-design approach [which, as highlighted by the Global Ocean Observing System (GOOS), the co-design concept aims to combine the knowledge of diverse experts and stakeholders to create innovative approaches to meet stakeholder needs in ways beyond what could be achieved by any one of those involved working alone] to create a deep-ocean observation project to strengthen deep ocean observing capacities in accordance with users’ and societal needs. The demonstration project discussed below builds on decades of co-design in collaborative efforts in the Azores Archipelago between science, private entities, governmental institutions, and local authorities for science-based management (Santos et al., 1995). Already in the 1980s, several Marine Protected Areas (MPAs) that impose fishing limitations to promote the sustainable use of marine resources were established by this collaborative effort (Santos et al., 1995). During the 2000s, the joint effort between the Regional Government of the Azores and the University of the Azores resulted in the inclusion of 11 sites in the Oslo Paris Convention for the Protection of the North Atlantic (OSPAR; https://www.ospar.org/) MPAs’ network. This made Portugal, and particularly the Azores, a pioneer in the protection of marine biodiversity at an international level (Ribeiro, 2010), and an important progressive player in the ground-breaking OSPAR high-seas MPAs process (Abecasis et al., 2015).