Li Yan

No Thumbnail Available
Last Name
Li
First Name
Yan
ORCID
0000-0002-7839-3428

Search Results

Now showing 1 - 2 of 2
  • Article
    Dissolved organic matter dynamics in the epipelagic Northwest Pacific low-latitude western boundary current system: insights from optical analyses
    (American Geophysical Union, 2021-08-17) Wang, Chao ; Li, Yizhen ; Li, Yan ; Zhou, Hui ; Stubbins, Aron ; Dahlgren, Randy A. ; Wang, Zhiheng ; Guo, Weidong
    High-resolution horizontal and vertical distribution of dissolved organic carbon (DOC), chromophoric, and fluorescent dissolved organic matter (CDOM and FDOM) were investigated in the western boundary current system of the tropical Northwest Pacific (<200 m) in autumn 2017. A strong correlation between DOC and stratification index indicated that the vertical DOC profile was primarily regulated by physical processes. The association of high aCDOM(254) with the maximum chlorophyll (Chl a) layer infers phytoplankton-sourced dissolved organic matter (DOM). The aCDOM(325) and humic-like FDOM (FDOMH) showed an accumulation in the deeper layer and positive correlations with apparent oxygen utilization and Chl a concentration at the maximum chlorophyll layer, suggesting that these components are related to microbial degradation of biogenic materials. Elevated Chl a at the frontal area between the North Equatorial Current (NEC) and cold Mindanao Eddy enhanced DOM production. Input waters from the NEC showed higher DOC, but lower FDOMH, than inflow waters from the New Guinea Coastal Current/Undercurrent (NGC(U)C). A mass balance model estimated a 6-times higher lateral DOC flux from the NEC tropical-gyre branch (12°N–7.5°N) than that from the subtropical-gyre branch (12°N–17°N). Based on comparison with long-term (1994–2015) average DOC fluxes for the same season, eddy and upstream processes contributed 38%, 46% and 40% of lateral DOC fluxes for the NEC tropical-gyre branch, NGC(U)C and export North Equatorial Counter Current, respectively. These results demonstrated that the quasi-permanent Mindanao and Halmahera eddies greatly enhance lateral export of DOM with altered properties throughout this large conjunction area.
  • Article
    Hydrological and biogeochemical controls on absorption and fluorescence of dissolved organic matter in the northern South China Sea
    (John Wiley & Sons, 2017-12-29) Wang, Chao ; Guo, Weidong ; Li, Yan ; Stubbins, Aron ; Li, Yizhen ; Song, Guodong ; Wang, Lei ; Cheng, Yuanyue
    The Kuroshio intrusion from the West Philippine Sea (WPS) and mesoscale eddies are important hydrological features in the northern South China Sea (SCS). In this study, absorption and fluorescence of dissolved organic matter (CDOM and FDOM) were determined to assess the impact of these hydrological features on DOM dynamics in the SCS. DOM in the upper 100 m of the northern SCS had higher absorption, fluorescence, and degree of humification than in the Kuroshio Current of the WPS. The results of an isopycnal mixing model showed that CDOM and humic-like FDOM inventories in the upper 100 m of the SCS were modulated by the Kuroshio intrusion. However, protein-like FDOM was influenced by in situ processes. This basic trend was modified by mesoscale eddies, three of which were encountered during the fieldwork (one warm eddy and two cold eddies). DOM optical properties inside the warm eddy resembled those of DOM in the WPS, indicating that warm eddies could derive from the Kuroshio Current through Luzon Strait. DOM at the center of cold eddies was enriched in humic-like fluorescence and had lower spectral slopes than in eddy-free waters, suggesting inputs of humic-rich DOM from upwelling and enhanced productivity inside the eddy. Excess CDOM and FDOM in northern SCS intermediate water led to export to the Pacific Ocean interior, potentially delivering refractory carbon to the deep ocean. This study demonstrated that DOM optical properties are promising tools to study active marginal sea-open ocean interactions.