Gallagher Stephen J.

No Thumbnail Available
Last Name
Gallagher
First Name
Stephen J.
ORCID
0000-0002-5593-2740

Search Results

Now showing 1 - 2 of 2
  • Article
    A synthesis of monsoon exploration in the Asian marginal seas
    (Copernicus Publications, 2022-10-28) Clift, Peter D ; Betzler, Christian ; Clemens, Steven C ; Christensen, Beth ; Eberli, Gregor P ; France-Lanord, Christian ; Gallagher, Stephen J. ; Holbourn, Ann ; Kuhnt, Wolfgang ; Murray, Richard W ; Rosenthal, Yair ; Tada, Ryuji ; Wan, Shiming
    The International Ocean Discovery Program (IODP) conducted a series of expeditions between 2013 and 2016 that were designed to address the development of monsoon climate systems in Asia and Australia. Significant progress was made in recovering Neogene sections spanning the region from the Arabian Sea to the Sea of Japan and southward to western Australia. High recovery by advanced piston corer (APC) has provided a host of semi-continuous sections that have been used to examine monsoonal evolution. Use of the half-length APC was successful in sampling sand-rich sediment in Indian Ocean submarine fans. The records show that humidity and seasonality developed diachronously across the region, although most regions show drying since the middle Miocene and especially since ∼ 4 Ma, likely linked to global cooling. A transition from C3 to C4 vegetation often accompanied the drying but may be more linked to global cooling. Western Australia and possibly southern China diverge from the general trend in becoming wetter during the late Miocene, with the Australian monsoon being more affected by the Indonesian Throughflow, while the Asian monsoon is tied more to the rising Himalaya in South Asia and to the Tibetan Plateau in East Asia. The monsoon shows sensitivity to orbital forcing, with many regions having a weaker summer monsoon during times of northern hemispheric Glaciation. Stronger monsoons are associated with faster continental erosion but not weathering intensity, which either shows no trend or a decreasing strength since the middle Miocene in Asia. Marine productivity proxies and terrestrial chemical weathering, erosion, and vegetation proxiesare often seen to diverge. Future work on the almost unknown Paleogene is needed, as well as the potential of carbonate platforms as archives of paleoceanographic conditions.
  • Article
    High-resolution and high-precision correlation of dark and light layers in the Quaternary hemipelagic sediments of the Japan Sea recovered during IODP Expedition 346
    (Springer, 2018-03-26) Tada, Ryuji ; Irino, Tomohisa ; Ikehara, Ken ; Karasuda, Akinori ; Sugisaki, Saiko ; Xuan, Chuang ; Sagawa, Takuya ; Itaki, Takuya ; Kubota, Yoshimi ; Lu, Song ; Seki, Arisa ; Murray, Richard W. ; Alvarez-Zarikian, Carlos A. ; Anderson, William T. ; Bassetti, Maria-Angela ; Brace, Bobbi J. ; Clemens, Steven C. ; da Costa Gurgel, Marcio H. ; Dickens, Gerald R. ; Dunlea, Ann G. ; Gallagher, Stephen J. ; Giosan, Liviu ; Henderson, Andrew C. G. ; Holbourn, Ann E. ; Kinsley, Christopher W. ; Lee, Gwang Soo ; Lee, Kyung Eun ; Lofi, Johanna ; Lopes, Christina I. C. D. ; Saavedra-Pellitero, Mariem ; Peterson, Larry C. ; Singh, Raj K. ; Toucanne, Samuel ; Wan, Shiming ; Zheng, Hongbo ; Ziegler, Martin
    The Quaternary hemipelagic sediments of the Japan Sea are characterized by centimeter- to decimeter-scale alternation of dark and light clay to silty clay, which are bio-siliceous and/or bio-calcareous to a various degree. Each of the dark and light layers are considered as deposited synchronously throughout the deeper (> 500 m) part of the sea. However, attempts for correlation and age estimation of individual layers are limited to the upper few tens of meters. In addition, the exact timing of the depositional onset of these dark and light layers and its synchronicity throughout the deeper part of the sea have not been explored previously, although the onset timing was roughly estimated as ~ 1.5 Ma based on the result of Ocean Drilling Program legs 127/128. Consequently, it is not certain exactly when their deposition started, whether deposition of dark and light layers was synchronous and whether they are correlatable also in the earlier part of their depositional history. The Quaternary hemipelagic sediments of the Japan Sea were drilled at seven sites during Integrated Ocean Drilling Program Expedition 346 in 2013. Alternation of dark and light layers was recovered at six sites whose water depths are > ~ 900 m, and continuous composite columns were constructed at each site. Here, we report our effort to correlate individual dark layers and estimate their ages based on a newly constructed age model at Site U1424 using the best available paleomagnetic datum and marker tephras. The age model is further tuned to LR04 δ18O curve using gamma ray attenuation density (GRA) since it reflects diatom contents that are higher during interglacial high-stands. The constructed age model for Site U1424 is projected to other sites using correlation of dark layers to form a high-resolution and high-precision paleo-observatory network that allows to reconstruct changes in material fluxes with high spatio-temporal resolutions.