Kumar N. Suresh

No Thumbnail Available
Last Name
Kumar
First Name
N. Suresh
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    What controls seasonal evolution of sea surface temperature in the Bay of Bengal? Mixed layer heat budget analysis using moored buoy observations along 90°E
    (The Oceanography Society, 2016-06) Thangaprakash, V. P. ; Girishkumar, M. S. ; Suprit, K. ; Kumar, N. Suresh ; Chaudhuri, Dipanjan ; Dinesh, K. ; Kumar, Ashok ; Shivaprasad, S. ; Ravichandran, M. ; Farrar, J. Thomas ; Sundar, R. ; Weller, Robert A.
    Continuous time-series measurements of near surface meteorological and ocean variables obtained from Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) moorings at 15°N, 90°E; 12°N, 90°E; and 8°N, 90°E and an Ocean Moored buoy Network for Northern Indian Ocean (OMNI) mooring at 18°N, 90°E are used to improve understanding of air-sea interaction processes and mixed layer (ML) temperature variability in the Bay of Bengal (BoB) at seasonal time scales. Consistent with earlier studies, this analysis reveals that net surface heat flux primarily controls the ML heat balance. The penetrative component of shortwave radiation plays a crucial role in the ML heat budget in the BoB, especially during the spring warming phase when the ML is thin. During winter and summer, vertical processes contribute significantly to the ML heat budget. During winter, the presence of a strong barrier layer and a temperature inversion (warmer water below the ML) leads to warming of the ML by entrainment of warm subsurface water into the ML. During summer, the barrier layer is relatively weak, and the ML is warmer than the underlying water (i.e., no temperature inversion); hence, the entrainment cools the mixed layer. The contribution of horizontal advection to the ML heat budget is greatest during winter when it serves to warm the upper ocean. In general, the residual term in the ML heat budget equation is quite large during the ML cooling phase compared to the warming phase when the contribution from vertical heat flux is small.
  • Article
    Air-sea interaction in the Bay of Bengal
    (The Oceanography Society, 2016-06) Weller, Robert A. ; Farrar, J. Thomas ; Buckley, Jared ; Mathew, Simi ; Venkatesan, Ramasamy ; Lekha, J. Sree ; Chaudhuri, Dipanjan ; Kumar, N. Suresh ; Kumar, B. Praveen
    Recent observations of surface meteorology and exchanges of heat, freshwater, and momentum between the ocean and the atmosphere in the Bay of Bengal are presented. These observations characterize air-sea interaction at 18°N, 89.5°E from December 2014 to January 2016 and also at other locations in the northern Bay of Bengal. Monsoonal variability dominated the records, with winds to the northeast in summer and to the southwest in winter. This variability included a strong annual cycle in the atmospheric forcing of the ocean in the Bay of Bengal, with the winter monsoon marked by sustained ocean heat loss resulting in ocean cooling, and the summer monsoon marked by strong storm events with dark skies and rain that also resulted in ocean cooling. The spring intermonsoon was a period of clear skies and low winds, when strong solar heating and weak wind-driven mixing led to ocean warming. The fall intermonsoon was a transitional period, with some storm events but also with enough clear skies and sunlight that ocean surface temperature rose again. Mooring and shipboard observations are used to examine the ability of model-based surface fluxes to represent air-sea interaction in the Bay of Bengal; the model-based fluxes have significant errors. The surface forcing observed at 18°N is also used together with a one-dimensional ocean model to illustrate the potential for local air-sea interaction to drive upper-ocean variability in the Bay of Bengal.
  • Article
    Quasi-biweekly mode of the Asian summer monsoon revealed in Bay of Bengal surface observations
    (American Geophysical Union, 2020-11-16) Lekha, J. Sree ; Lucas, Andrew J. ; Sukhatme, Jai ; Joseph, Jossia K. ; Ravichandran, M. ; Kumar, N. Suresh ; Farrar, J. Thomas ; Sengupta, Debasis
    Asian summer monsoon has a planetary‐scale, westward propagating “quasi‐biweekly” mode of variability with a 10–25 day period. Six years of moored observations at 18°N, 89.5°E in the north Bay of Bengal (BoB) reveal distinct quasi‐biweekly variability in sea surface salinity (SSS) during summer and autumn, with peak‐to‐peak amplitude of 3–8 psu. This large‐amplitude SSS variability is not due to variations of surface freshwater flux or river runoff. We show from the moored data, satellite SSS, and reanalyses that surface winds associated with the quasi‐biweekly monsoon mode and embedded weather‐scale systems, drive SSS and coastal sea level variability in 2015 summer monsoon. When winds are calm, geostrophic currents associated with mesoscale ocean eddies transport Ganga‐Brahmaputra‐Meghna river water southward to the mooring, salinity falls, and the ocean mixed layer shallows to 1–10 m. During active (cloudy, windy) spells of quasi‐biweekly monsoon mode, directly wind‐forced surface currents carry river water away to the east and north, leading to increased salinity at the moorings, and rise of sea level by 0.1–0.5 m along the eastern and northern boundary of the bay. During July–August 2015, a shallow pool of low‐salinity river water lies in the northeastern bay. The amplitude of a 20‐day oscillation of sea surface temperature (SST) is two times larger within the fresh pool than in the saltier ocean to the west, although surface heat flux is nearly identical in the two regions. This is direct evidence that spatial‐temporal variations of BoB salinity influences sub‐seasonal SST variations, and possibly SST‐mediated monsoon air‐sea interaction.