Montlucon Daniel B.

No Thumbnail Available
Last Name
First Name
Daniel B.

Search Results

Now showing 1 - 17 of 17
  • Article
    Radiocarbon dating of alkenones from marine sediments : II. Assessment of carbon process blanks
    (Dept. of Geosciences, University of Arizona, 2005) Mollenhauer, Gesine ; Montlucon, Daniel B. ; Eglinton, Timothy I.
    We evaluate potential process blanks associated with radiocarbon measurement of microgram to milligram quantities of alkenones at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility. Two strategies to constrain the contribution of blanks to alkenone 14C dates were followed: 1) dating of samples of known age and 2) multiple measurements of identical samples. We show that the potential contamination associated with the procedure does not lead to a systematic bias of the results of alkenone dating to either younger or older ages. Our results indicate that alkenones record Δ14C of ambient DIC with an accuracy of approximately 10‰. A conservative estimate of measurement precision is 17‰ for modern samples. Alkenone 14C ages are expected to be reliable within 500 yr for samples younger than 10,500 14C yr.
  • Preprint
    Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins
    ( 2013-07) Feng, Xiaojuan ; Vonk, Jorien E. ; van Dongen, Bart E. ; Gustafsson, Orjan ; Semiletov, Igor P. ; Dudarev, Oleg V. ; Wang, Zhiheng ; Montlucon, Daniel B. ; Wacker, Lukas ; Eglinton, Timothy I.
    Mobilization of Arctic permafrost carbon is expected to increase with warming-induced thawing. However, this effect is challenging to assess due to the diverse processes controlling the release of various organic carbon (OC) pools from heterogeneous Arctic landscapes. Here, by radiocarbon dating various terrestrial OC components in fluvially- and coastally-integrated estuarine sediments, we present a unique framework for deconvoluting the contrasting mobilization mechanisms of surface versus deep (permafrost) carbon pools across the climosequence of the Eurasian Arctic. Vascular-plant-derived lignin phenol 14C contents reveal significant inputs of young carbon from surface sources whose delivery is dominantly controlled by river runoff. In contrast, plant wax lipids predominantly trace ancient (permafrost) OC that is preferentially mobilized from discontinuous permafrost regions where hydrological conduits penetrate deeper into soils and thermokarst erosion occurs more frequently. As river runoff has significantly increased across the Eurasian Arctic in recent decades, we estimate from an isotopic mixing model that, in tandem with an increased transfer of young surface carbon, the proportion of mobilized terrestrial OC accounted for by ancient carbon has increased by 3-6% between 1985-2004. These findings suggest that, while partly masked by surface-carbon export, climate-change-induced mobilization of old permafrost carbon is well under way in the Arctic.
  • Article
    Radiocarbon dating of alkenones from marine sediments : I. Isolation protocol
    (Dept. of Geosciences, University of Arizona, 2005) Ohkouchi, Naohiko ; Xu, Li ; Reddy, Christopher M. ; Montlucon, Daniel B. ; Eglinton, Timothy I.
    The chemical and isotopic compositions of long-chain (C36–C39) unsaturated ketones (alkenones), a unique class of algal lipids, encode surface ocean properties useful for paleoceanographic reconstruction. Recently, we have sought to extend the utility of alkenones as oceanic tracers through measurement of their radiocarbon contents. Here, we describe a method for isolation of alkenones from sediments as a compound class based on a sequence of wet chemical techniques. The steps involved, which include silica gel column chromatography, urea adduction, and silver nitrate-silica gel column chromatography, exploit various structural attributes of the alkenones. Amounts of purified alkenones estimated by GC/FID measurements were highly correlated with CO2 yields after sample combustion, indicating purities of greater than 90% for samples containing ≥100 μg C. The degree of alkenone unsaturation ( ) also varied minimally through the procedure. We also describe a high-performance liquid chromatography (HPLC) method to isolate individual alkenones for molecular-level structural and isotopic determination.
  • Article
    Spatial variability in the abundance, composition, and age of organic matter in surficial sediments of the East China Sea
    (John Wiley & Sons, 2013-11-15) Wu, Ying ; Eglinton, Timothy I. ; Yang, Liyang ; Deng, Bing ; Montlucon, Daniel B. ; Zhang, Jing
    Understanding the sources and fate of organic matter (OM) sequestered in continental margin sediments is of importance because the mode and efficiency of OM burial impact the carbon cycle and the regulation of atmospheric CO2 over long time scales. We carried out molecular (lignin-derived phenols from CuO oxidation), elemental, isotopic (δ13C, Δ14C), and sedimentological (grain size and mineral surface area) analyses in order to examine spatial variability in the abundance, source, age of surface sediments of the East China Sea. Higher terrigenous organic matter values were found in the main accumulating areas of fluvial sediments, including the Changjiang (Yangtze) Estuary and Zhejiang-Fujian coastal zone. Isotopic and biomarker data suggest that the sedimentary OM in the inner shelf region was dominated by aged (Δ14C = −423 ± 42‰) but relatively lignin-rich OM (Λ = 0.94 ± 0.57 mg/100 mg OC) associated with fine-grained sediments, suggesting important contributions from soils. In contrast, samples from the outer shelf, while of similar age (Δ14 C = −450 ± 99‰), are lignin poor (Λ = 0.25 ± 0.14 mg/100 mg OC) and associated with coarse-grained material. Regional variation of lignin phenols and OM ages indicates that OM content is fundamentally controlled by hydrodynamic sorting (especially, sediment redistribution and winnowing) and in situ primary production. Selective sorption of acid to aldehyde in clay fraction also modified the ratios of lignin phenols. The burial of lignin in East China Sea is estimated to be relatively efficient, possibly as a consequence of terrigenous OM recalcitrance and/or relatively high sedimentation rates in the Changjiang Estuary and the adjacent Zhejing-Fujian mud belt.
  • Article
    Spatiotemporal variation of the quality, origin, and age of particulate organic matter transported by the Yangtze River (Changjiang)
    (John Wiley & Sons, 2018-09-15) Wu, Ying ; Eglinton, Timothy I. ; Zhang, Jing ; Montlucon, Daniel B.
    Information on the age dynamics of particulate organic matter (POM) in large river systems is currently sparse and represents an important knowledge gap in our understanding of the global carbon cycle. Here we examine variations in organic geochemical characteristics of suspended sediments from the Changjiang (Yangtze River) system collected between 1997 and 2010. Higher particulate organic carbon content (POC%) values were observed in the middle reach, especially after 2003, and are attributed to the increase of in situ (aquatic) primary production associated with decreased total suspended matter concentrations. Corresponding Δ14C values from depth profiles taken in 2009 and 2010 indicate spatial and temporal variations in POC sources within the basin. Two isotopic mass balance approaches were explored to quantitatively apportion different sources of Changjiang POM. Results indicate that contributions of biomass and pre‐aged soil organic matter are dominant, regardless of hydrological conditions, with soil‐derived organic carbon comprising 17–56% of POC based on a Monte Carlo three‐end‐member mixing model. In contrast, binary mixing model calculations suggest that up to 80% of POC (2009 samples only) derived from biospheric sources. The emplacement of the Three Gorges Dam and resulting trapping of sediment from the upper reach of the watershed resulted in a modification of POM 14C ages in the reservoir. With the resulting decline in sediment load and increase in the proportion of modern POC in the lower reach, these changes in POM flux and composition of the Changjiang have significant implications for downstream carbon cycle processes.
  • Article
    High-sensitivity measurement of diverse vascular plant-derived biomarkers in high-altitude ice cores
    (American Geophysical Union, 2009-07-03) Makou, Matthew C. ; Thompson, Lonnie G. ; Montlucon, Daniel B. ; Eglinton, Timothy I.
    Semi-volatile organic compounds derived from burned and fresh vascular plant sources and preserved in high-altitude ice fields were detected and identified through use of recently developed analytical tools. Specifically, stir bar sorptive extraction and thermal desorption coupled with gas chromatography/time-of-flight mass spectrometry allowed measurement of multiple biomarkers in small sample volumes (≤30 ml). Among other compounds of interest, several diterpenoids, which suggest inputs from conifers and conifer burning, were identified in post-industrial era and older Holocene ice from the Sajama site in the Bolivian Andes, but not in a glacial period sample, consistent with aridity changes. Differences in biomarker assemblages between sites support the use of these compounds as regionally constrained recorders of vegetation and climate change. This study represents the first application of these analytical techniques to ice core research and the first indication that records of vegetation fires may be reconstructed from diterpenoids in ice.
  • Preprint
    Temporal deconvolution of vascular plant-derived fatty acids exported from terrestrial watersheds
    ( 2018-09) Vonk, Jorien E. ; Drenzek, Nicholas J. ; Hughen, Konrad A. ; Stanley, Rachel H. R. ; McIntyre, Cameron P. ; Montlucon, Daniel B. ; Giosan, Liviu ; Southon, John R. ; Santos, Guaciara M. ; Druffel, Ellen R. M. ; Andersson, August A. ; Sköld, Martin ; Eglinton, Timothy I.
    Relatively little is known about the amount of time that lapses between the photosynthetic fixation of carbon by vascular land plants and its incorporation into the marine sedimentary record, yet the dynamics of terrestrial carbon sequestration have important implications for the carbon cycle. Vascular plant carbon may encounter multiple potential intermediate storage pools and transport trajectories, and the age of vascular plant carbon accumulating in marine sediments will reflect these different predepositional histories. Here, we examine down-core 14C profiles of higher plant leaf waxderived fatty acids isolated from high fidelity sedimentary sequences spanning the socalled “bomb-spike”, and encompassing a ca. 60-degree latitudinal gradient from tropical (Cariaco Basin), temperate (Saanich Inlet), and polar (Mackenzie Delta) watersheds to constrain integrated vascular plant carbon storage/transport times (“residence times”). Using a modeling framework, we find that, in addition to a "young" (conditionally defined as < 50 y) carbon pool, an old pool of compounds comprises 49 to 78 % of the fractional contribution of organic carbon (OC) and exhibits variable ages reflective of the environmental setting. For the Mackenzie Delta sediments, we find a mean age of the old pool of 28 ky (±9.4, standard deviation), indicating extensive pre-aging in permafrost soils, whereas the old pools in Saanich Inlet and Cariaco Basin sediments are younger, 7.9 (±5.0) and 2.4 (±0.50) to 3.2 (±0.54) ky, respectively, indicating less protracted storage in terrestrial reservoirs. The "young" pool showed clear annual contributions for Saanich Inlet and Mackenzie Delta sediments (comprising 24% and 16% of this pool, respectively), likely reflecting episodic transport of OC from steep hillside slopes surrounding Saanich Inlet and annual spring flood deposition in the Mackenzie Delta, respectively. Contributions of 5-10 year old OC to the Cariaco Basin show a short delay of OC inflow, potentially related to transport time to the offshore basin. Modeling results also indicate that the Mackenzie Delta has an influx of young but decadal material (20-30 years of age), pointing to the presence of an intermediate reservoir. Overall, these results show that a significant fraction of vascular plant C undergoes pre-aging in terrestrial reservoirs prior to accumulation in deltaic and marine sediments. The age distribution, reflecting both storage and transport times, likely depends on landscape-specific factors such as local topography, hydrographic characteristics, and mean annual temperature of the catchment, all of which affect the degree of soil buildup and preservation. We show that catchment-specific carbon residence times across landscapes can vary by an order of magnitude, with important implications both for carbon cycle studies and for the interpretation of molecular terrestrial paleoclimate records preserved in sedimentary sequences.
  • Preprint
    Spatial variations in geochemical characteristics of the modern Mackenzie Delta sedimentary system
    ( 2015-01) Vonk, Jorien E. ; Giosan, Liviu ; Blusztajn, Jerzy S. ; Montlucon, Daniel B. ; Graf Pannatier, Elisabeth ; McIntyre, Cameron P. ; Wacker, Lukas ; Macdonald, Robie W. ; Yunker, Mark B. ; Eglinton, Timothy I.
    The Mackenzie River in Canada is by far the largest riverine source of sediment and organic carbon (OC) to the Arctic Ocean. Therefore the transport, degradation and burial of OC along the land-to-ocean continuum for this riverine system is important to study both regionally and as a dominant representative of Arctic rivers. Here, we apply sedimentological (grain size, mineral surface area), and organic and inorganic geochemical techniques (%OC, δ13C-OC and Δ14C-OC, 143Nd/144Nd,δ2H and δ18O, major and trace elements) on particulate, bank, channel and lake surface sediments from the Mackenzie Delta, as well as on surface sediments from the Mackenzie shelf in the Beaufort Sea. Our data show a hydrodynamic sorting effect resulting in the accumulation of finer-grained sediments in lake and shelf deposits. A general decrease in organic carbon (OC) to mineral surface area ratios from river-to-sea furthermore suggests a loss of mineral-bound terrestrial OC during transport through the delta and deposition on the shelf. The net isotopic value of the terrestrial OC that is lost en route, derived from relationships between δ13C, OC and surface area, is -28.5‰ for δ13C and -417‰ for Δ14C. We calculated that OC burial efficiencies are around 55%, which are higher (~20%) than other large river systems such as the Amazon. Old sedimentary OC ages, up to 12 14C-ky, suggest the delivery of both a petrogenic OC source (with an estimated contribution of 19±9%) as well as a pre-aged terrestrial OC source. We calculated the 14C-age of this pre-aged, biogenic, component to be about 6100 yrs, or -501‰, which illustrates that terrestrial OC in the watershed can reside for millennia in soils before being released into the river. Surface sediments in lakes across the delta (n=20) showed large variability in %OC (0.92% to 5.7%) and δ13C (-30.7‰ to -23.5‰). High-closure lakes, flooding only at exceptionally high water levels, hold high sedimentary OC contents (> 2.5%) and young biogenic OC with a terrestrial or an autochthonous source whereas no-closure lakes, permanently connected to a river channel, hold sediments with pre-aged, terrestrial OC. The intermediate low-closure lakes, flooding every year during peak discharge, display the largest variability in OC content, age and source, likely reflecting variability in for example the length of river-lake connections, the distance to sediment source and the number of intermediate settling basins. Bank, channel and suspended sediment show variable 143Nd/144Nd values, yet there is a gradual but distinct spatial transition in 143Nd/144Nd (nearly three ε units; from -11.4 to -13.9) in the detrital fraction of lake surface sediments from the western to the eastern delta. This reflects the input of younger Peel River catchment material in the west and input of older geological source material in the east, and suggests that lake sediments can be used to assess variability in source watershed patterns across the delta.
  • Article
    Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic : 14C characteristics of sedimentary carbon components and their environmental controls
    (John Wiley & Sons, 2015-11-02) Feng, Xiaojuan ; Gustafsson, Orjan ; Holmes, Robert M. ; Vonk, Jorien E. ; van Dongen, Bart E. ; Semiletov, Igor P. ; Dudarev, Oleg V. ; Yunker, Mark B. ; Macdonald, Robie W. ; Wacker, Lukas ; Montlucon, Daniel B. ; Eglinton, Timothy I.
    Distinguishing the sources, ages, and fate of various terrestrial organic carbon (OC) pools mobilized from heterogeneous Arctic landscapes is key to assessing climatic impacts on the fluvial release of carbon from permafrost. Through molecular 14C measurements, including novel analyses of suberin- and/or cutin-derived diacids (DAs) and hydroxy fatty acids (FAs), we compared the radiocarbon characteristics of a comprehensive suite of terrestrial markers (including plant wax lipids, cutin, suberin, lignin, and hydroxy phenols) in the sedimentary particles from nine major arctic and subarctic rivers in order to establish a benchmark assessment of the mobilization patterns of terrestrial OC pools across the pan-Arctic. Terrestrial lipids, including suberin-derived longer-chain DAs (C24,26,28), plant wax FAs (C24,26,28), and n-alkanes (C27,29,31), incorporated significant inputs of aged carbon, presumably from deeper soil horizons. Mobilization and translocation of these “old” terrestrial carbon components was dependent on nonlinear processes associated with permafrost distributions. By contrast, shorter-chain (C16,18) DAs and lignin phenols (as well as hydroxy phenols in rivers outside eastern Eurasian Arctic) were much more enriched in 14C, suggesting incorporation of relatively young carbon supplied by runoff processes from recent vegetation debris and surface layers. Furthermore, the radiocarbon content of terrestrial markers is heavily influenced by specific OC sources and degradation status. Overall, multitracer molecular 14C analysis sheds new light on the mobilization of terrestrial OC from arctic watersheds. Our findings of distinct ages for various terrestrial carbon components may aid in elucidating fate of different terrestrial OC pools in the face of increasing arctic permafrost thaw.
  • Article
    Climate control on terrestrial biospheric carbon turnover
    (National Academy of Sciences, 2021-02-23) Eglinton, Timothy I. ; Galy, Valier ; Hemingway, Jordon D. ; Feng, Xiaojuan ; Bao, Hongyan ; Blattmann, Thomas M. ; Dickens, Angela F. ; Gies, Hannah ; Giosan, Liviu ; Haghipour, Negar ; Hou, Pengfei ; Lupker, Maarten ; McIntyre, Cameron P. ; Montlucon, Daniel B. ; Peucker-Ehrenbrink, Bernhard ; Ponton, Camilo ; Schefuß, Enno ; Schwab, Melissa S. ; Voss, Britta M. ; Wacker, Lukas ; Wu, Ying ; Zhao, Meixun
    Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon (14C) ages on two groups of molecular tracers of plant-derived carbon—leaf-wax lipids and lignin phenols—from a globally distributed suite of rivers. We find significant negative relationships between the 14C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil 14C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change–induced perturbations of soil OC turnover and stocks.
  • Article
    Multi-molecular tracers of terrestrial carbon transfer across the pan-Arctic : comparison of hydrolyzable components with plant wax lipids and lignin phenols
    (Copernicus Publications on behalf of the European Geosciences Union, 2015-08-15) Feng, Xiaojuan ; Gustafsson, Orjan ; Holmes, Robert M. ; Vonk, Jorien E. ; van Dongen, Bart E. ; Semiletov, Igor P. ; Dudarev, Oleg V. ; Yunker, Mark B. ; Macdonald, Robie W. ; Montlucon, Daniel B. ; Eglinton, Timothy I.
    Hydrolyzable organic carbon (OC) comprises a significant component of sedimentary particulate matter transferred from land into oceans via rivers. Its abundance and nature are however not well studied in Arctic river systems, and yet may represent an important pool of carbon whose fate remains unclear in the context of mobilization and related processes associated with a changing climate. Here, we examine the molecular composition and source of hydrolyzable compounds isolated from sedimentary particles derived from nine rivers across the pan-Arctic. Bound fatty acids (b-FAs), hydroxy FAs, n-alkane-α,ω-dioic acids (DAs) and phenols were the major components released upon hydrolysis of these sediments. Among them, b-FAs received considerable inputs from bacterial and/or algal sources, whereas ω-hydroxy FAs, mid-chain substituted acids, DAs, and hydrolyzable phenols were mainly derived from cutin and suberin of higher plants. We further compared the distribution and fate of suberin- and cutin-derived compounds with those of other terrestrial biomarkers (plant wax lipids and lignin phenols) from the same Arctic river sedimentary particles and conducted a benchmark assessment of several biomarker-based indicators of OC source and extent of degradation. While suberin-specific biomarkers were positively correlated with plant-derived high-molecular-weight (HMW) FAs, lignin phenols were correlated with cutin-derived compounds. These correlations suggest that, similar to leaf-derived cutin, lignin was mainly derived from litter and surface soil horizons, whereas suberin and HMW FAs incorporated significant inputs from belowground sources (roots and deeper soil). This conclusion is supported by the negative correlation between lignin phenols and the ratio of suberin-to-cutin biomarkers. Furthermore, the molecular composition of investigated biomarkers differed between Eurasian and North American Arctic rivers: while lignin dominated in the terrestrial OC of Eurasian river sediments, hydrolyzable OC represented a much larger fraction in the sedimentary particles from Colville River. Hence, studies exclusively focusing on either plant wax lipids or lignin phenols will not be able to fully unravel the mobilization and fate of bound OC in Arctic rivers. More comprehensive, multi-molecular investigations are needed to better constrain the land–ocean transfer of carbon in the changing Arctic, including further research on the degradation and transfer of both free and bound components in Arctic river sediments.
  • Article
    Biological and physical controls on the flux and characteristics of sinking particles on the Northwest Atlantic margin
    (John Wiley & Sons, 2017-06-01) Hwang, Jeomshik ; Manganini, Steven J. ; Park, Jonglin ; Montlucon, Daniel B. ; Toole, John M. ; Eglinton, Timothy I.
    Biogenic matter characteristics and radiocarbon contents of organic carbon (OC) were examined on sinking particle samples intercepted at three nominal depths of 1000 m, 2000 m, and 3000 m (∼50 m above the seafloor) during a 3 year sediment trap program on the New England slope in the Northwest Atlantic. We have sought to characterize the sources of sinking particles in the context of vertical export of biogenic particles from the overlying water column and lateral supply of resuspended sediment particles from adjacent margin sediments. High aluminum (Al) abundances and low OC radiocarbon contents indicated contributions from resuspended sediment which was greatest at 3000 m but also significant at shallower depths. The benthic source (i.e., laterally supplied resuspended sediment) of opal appears negligible based on the absence of a correlation with Al fluxes. In comparison, CaCO3 fluxes at 3000 m showed a positive correlation with Al fluxes. Benthic sources accounted for 42 ∼ 63% of the sinking particle flux based on radiocarbon mass balance and the relationship between Al flux and CaCO3 flux. Episodic pulses of Al at 3000 m were significantly correlated with the near-bottom current at a nearby hydrographic mooring site, implying the importance of current variability in lateral particle transport. However, Al fluxes at 1000 m and 2000 m were coherent but differed from those at 3000 m, implying more than one mode of lateral supply of particles in the water column.
  • Article
    Organic carbon aging during across‐shelf transport
    (John Wiley & Sons, 2018-08-22) Bao, Rui ; Uchida, Masao ; Zhao, Meixun ; Haghipour, Negar ; Montlucon, Daniel B. ; McNichol, Ann P. ; Wacker, Lukas ; Hayes, John M. ; Eglinton, Timothy I.
    Compound‐specific radiocarbon analysis was performed on different grain‐size fractions of surficial sediments to examine and compare lateral transport times (LTTs) of organic carbon. 14C aging of long‐chain leaf wax fatty acids along two dispersal pathways of fluvially derived material on adjacent continental margins implies LTTs over distances of ~30 to 500 km that range from hundreds to thousands of years. The magnitude of aging differs among grain size fractions. Our finding suggests that LTTs vary both temporally and spatially as a function of the specific properties of different continental shelf settings. Observations suggest that 14C aging is widespread during lateral transport over continental shelves, with hydrodynamic particle sorting inducing age variations among organic components residing in different grain sizes. Consideration of these phenomena is of importance for understanding carbon cycle processes and interpretation on sedimentary records on continental margins.
  • Preprint
    14C and 13C characteristics of higher plant biomarkers in Washington margin surface sediments
    ( 2012-11-22) Feng, Xiaojuan ; Benitez-Nelson, Bryan C. ; Montlucon, Daniel B. ; Prahl, Fredrick G. ; McNichol, Ann P. ; Xu, Li ; Repeta, Daniel J. ; Eglinton, Timothy I.
    Plant wax lipids and lignin phenols are the two most common classes of molecular markers that are used to trace vascular plant-derived OM in the marine environment. However, their 13C and 14C compositions have not been directly compared, which can be used to constrain the flux and attenuation of terrestrial carbon in marine environment. In this study, we describe a revised method of isolating individual lignin phenols from complex sedimentary matrices for 14C analysis using high pressure liquid chromatography (HPLC) and compare this approach to a method utilizing preparative capillary gas chromatography (PCGC). We then examine in detail the 13C and 14C compositions of plant wax lipids and lignin phenols in sediments from the inner and mid shelf of the Washington margin that are influenced by discharge of the Columbia River. Plant wax lipids (including n-alkanes, n-alkanoic (fatty) acids, n-alkanols, and n-aldehydes) displayed significant variability in both δ13C (-28.3 to -37.5 ‰) and ∆14C values (-204 to +2 ‰), suggesting varied inputs and/or continental storage and transport histories. In contrast, lignin phenols exhibited similar δ13C values (between -30 to -34 ‰) and a relatively narrow range of ∆14C values (-45 to -150 ‰; HPLC-based mesurement) that were similar to, or younger than, bulk OM (-195 to -137 ‰). Moreover, lignin phenol 14C age correlated with the degradation characteristics of this terrestrial biopolymer in that vanillyl phenols were on average ~500 years older than syringyl and cinnamyl phenols that degrade faster in soils and sediments. The isotopic characteristics, abundance, and distribution of lignin phenols in sediments suggest that they serve as promising tracers of recently biosynthesized terrestrial OM during supply to, and dispersal within the marine environment. Lignin phenol 14C measurements may also provide useful constraints on the vascular plant end member in isotopic mixing models for carbon source apportionment, and for interpretation of sedimentary records of past vegetation dynamics. Key words: 14C and 13C composition, radiocarbon age, plant wax lipids, lignin phenols, Washington margin, marine carbon cycling, terrestrial organic matter
  • Article
    Seasonal hydrology drives rapid shifts in the flux and composition of dissolved and particulate organic carbon and major and trace ions in the Fraser River, Canada
    (Copernicus Publications on behalf of the European Geosciences Union, 2015-10-01) Voss, Britta M. ; Peucker-Ehrenbrink, Bernhard ; Eglinton, Timothy I. ; Spencer, Robert G. M. ; Bulygina, Ekaterina ; Galy, Valier ; Lamborg, Carl H. ; Ganguli, Priya M. ; Montlucon, Daniel B. ; Marsh, Steve ; Gillies, Sharon L. ; Fanslau, Jenna ; Epp, A. ; Luymes, Rosalie
    Rapid changes in the volume and sources of discharge during the spring freshet lead to pronounced variations in biogeochemical properties in snowmelt-dominated river basins. We used daily sampling during the onset of the freshet in the Fraser River (southwestern Canada) in 2013 to identify rapid changes in the flux and composition of dissolved material, with a focus on dissolved organic matter (DOM). Previous time series sampling (at twice monthly frequency) of dissolved inorganic species in the Fraser River has revealed smooth seasonal transitions in concentrations of major ions and tracers of water and dissolved load sources between freshet and base flow periods. In contrast, daily sampling reveals a significant increase in dissolved organic carbon (DOC) concentration (200 to 550 μmol L−1) occurring over a matter of days, accompanied by a shift in DOM optical properties, indicating a transition towards higher molecular weight, more aromatic DOM composition. Comparable changes in DOM composition, but not concentration, occur at other times of year, underscoring the role of seasonal climatology in DOM cycling. A smaller data set of total and dissolved Hg concentrations also showed variability during the spring freshet period, although dissolved Hg dynamics appear to be driven by factors beyond DOM as characterized here. The time series records of DOC and particulate organic carbon (POC) concentrations indicate that the Fraser River exports 0.25–0.35 % of its annual basin net primary productivity. The snowmelt-dominated hydrology, forested land cover, and minimal reservoir impoundment of the Fraser River may influence the DOC yield of the basin, which is high relative to the nearby Columbia River and of similar magnitude to that of the Yukon River to the north. Anticipated warming and decreased snowfall due to climate changes in the region may cause an overall decrease in DOM flux from the Fraser River to the coastal ocean in coming decades
  • Article
    Arctic deltaic lake sediments as recorders of fluvial organic matter deposition
    (Frontiers Media, 2016-08-17) Vonk, Jorien E. ; Dickens, Angela F. ; Giosan, Liviu ; Hussain, Zainab A. ; Kim, Bokyung ; Zipper, Samuel C. ; Holmes, Robert M. ; Montlucon, Daniel B. ; Galy, Valier ; Eglinton, Timothy I.
    Arctic deltas are dynamic and vulnerable regions that play a key role in land-ocean interactions and the global carbon cycle. Delta lakes may provide valuable historical records of the quality and quantity of fluvial fluxes, parameters that are challenging to investigate in these remote regions. Here we study lakes from across the Mackenzie Delta, Arctic Canada, that receive fluvial sediments from the Mackenzie River when spring flood water levels rise above natural levees. We compare downcore lake sediments with suspended sediments collected during the spring flood, using bulk (% organic carbon, % total nitrogen, δ13C, Δ14C) and molecular organic geochemistry (lignin, leaf waxes). High-resolution age models (137Cs, 210Pb) of downcore lake sediment records (n = 11) along with lamina counting on high-resolution radiographs show sediment deposition frequencies ranging between annually to every 15 years. Down-core geochemical variability in a representative delta lake sediment core is consistent with historical variability in spring flood hydrology (variability in peak discharge, ice jamming, peak water levels). Comparison with earlier published Mackenzie River depth profiles shows that (i) lake sediments reflect the riverine surface suspended load, and (ii) hydrodynamic sorting patterns related to spring flood characteristics are reflected in the lake sediments. Bulk and molecular geochemistry of suspended particulate matter from the spring flood peak and lake sediments are relatively similar showing a mixture of modern higher-plant derived material, older terrestrial permafrost material, and old rock-derived material. This suggests that deltaic lake sedimentary records hold great promise as recorders of past (century-scale) riverine fluxes and may prove instrumental in shedding light on past behavior of arctic rivers, as well as how they respond to a changing climate.
  • Preprint
    Tracing river chemistry in space and time : dissolved inorganic constituents of the Fraser River, Canada
    ( 2013-07-19) Voss, Britta M. ; Peucker-Ehrenbrink, Bernhard ; Eglinton, Timothy I. ; Fiske, Gregory J. ; Wang, Zhaohui Aleck ; Hoering, Katherine A. ; Montlucon, Daniel B. ; LeCroy, Chase ; Pal, Sharmila ; Marsh, Steven ; Gillies, Sharon L. ; Janmaat, Alida ; Bennett, Michelle ; Downey, Bryce ; Fanslau, Jenna ; Fraser, Helena ; Macklam-Harron, Garrett ; Martinec, Michelle ; Wiebe, Brayden
    The Fraser River basin in southwestern Canada bears unique geologic and climatic features which make it an ideal setting for investigating the origins, transformations and delivery to the coast of dissolved riverine loads under relatively pristine conditions. We present results from sampling campaigns over three years which demonstrate the lithologic and hydrologic controls on fluxes and isotope compositions of major dissolved inorganic runoff constituents (dissolved nutrients, major and trace elements, 87Sr/86Sr, δD). A time series record near the Fraser mouth allows us to generate new estimates of discharge-weighted concentrations and fluxes, and an overall chemical weathering rate of 32 t km-2 y-1. The seasonal variations in dissolved inorganic species are driven by changes in hydrology, which vary in timing across the basin. The time series record of dissolved 87Sr/86Sr is of particular interest, as a consistent shift between higher (“more radiogenic”) values during spring and summer and less radiogenic values in fall and winter demonstrates the seasonal variability in source contributions throughout the basin. This seasonal shift is also quite large (0.709 – 0.714), with a discharge-weighted annual average of 0.7120 (2 s.d. = 0.0003). We present a mixing model which predicts the seasonal evolution of dissolved 87Sr/86Sr based on tributary compositions and water discharge. This model highlights the importance of chemical weathering fluxes from the old sedimentary bedrock of headwater drainage regions, despite their relatively small contribution to the total water flux.