Li Jianqiang

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 3 of 3
  • Article
    Time dependent flow of Atlantic water on the continental slope of the Beaufort Sea based on moorings
    (American Geophysical Union, 2021-05-26) Li, Jianqiang ; Lin, Peigen ; Pickart, Robert S. ; Yang, Xiao-Yi
    The flow and transformation of warm, salty Atlantic-origin water (AW) in the Arctic Ocean plays an important role in the global overturning circulation that helps regulate Earth's climate. The heat that it transports also impacts ice melt in different parts of the Arctic. This study uses data from a mooring array deployed across the shelf/slope of the Alaskan Beaufort Sea from 2002–2004 to investigate the flow of AW. A short-lived “rebound jet” of AW on the upper continental slope regularly follows wind-driven upwelling events. A total of 57 such events, lasting on average 3 days each, occurred over the 2 year period. As the easterly wind subsides, the rebound jet quickly spins up while the isopycnals continue to slump from their upwelled state. The strength of the jet is related to the cross-slope isopycnal displacement, which in turn is dependent on the magnitude of the wind, in line with previous modeling. Seaward of the rebound jet, the offshore-most mooring of the array measured the onshore branch of the AW boundary flowing eastward in the Canada Basin. However, the signature of the boundary current was only evident in the second year of the mooring timeseries. We suspect that this is due to the varying influence of the Beaufort Gyre in the two years, associated with a change in pattern of the wind stress curl that helps drive the gyre.
  • Article
    The Atlantic Water boundary current in the Chukchi Borderland and Southern Canada Basin
    (American Geophysical Union, 2020-07-27) Li, Jianqiang ; Pickart, Robert S. ; Lin, Peigen ; Bahr, Frank B. ; Arrigo, Kevin R. ; Juranek, Laurie W. ; Yang, Xiao‐Yi
    Synoptic shipboard measurements, together with historical hydrographic data and satellite data, are used to elucidate the detailed structure of the Atlantic Water (AW) boundary current system in the southern Canada Basin and its connection to the upstream source of AW in the Chukchi Borderland. Nine high‐resolution occupations of a transect extending from the Beaufort shelf to the deep basin near 152°W, taken between 2003 and 2018, reveal that there are two branches of the AW boundary current that flow beneath and counter to the Beaufort Gyre. Each branch corresponds to a warm temperature core and transports comparable amounts of Fram Strait Branch Water between roughly 200–700 m depth, although they are characterized by a different temperature/salinity (T/S) structure. The mean volume flux of the combined branches is 0.87 ± 0.13 Sv. Using the historical hydrographic data, the two branches are tracked upstream by their temperature cores and T/S signatures. This sheds new light on how the AW negotiates the Chukchi Borderland and why two branches emerge from this region. Lastly, the propagation of warm temperature anomalies through the region is quantified and shown to be consistent with the deduced circulation scheme.
  • Article
    Fate of warm Pacific water in the Arctic Basin
    (American Geophysical Union, 2021-10-01) Lin, Peigen ; Pickart, Robert S. ; Våge, Kjetil ; Li, Jianqiang
    Pacific Summer Water (PSW) plays a critical role in the ecosystem of the western Arctic Ocean, impacting sea-ice melt and providing freshwater to the basin. Most of the water exits the Chukchi Sea shelf through Barrow Canyon, but the manner in which this occurs and the ultimate fate of the water remain uncertain. Using an extensive collection of historical hydrographic and velocity data, we demonstrate how the PSW outflow depends on different wind conditions, dictating whether the warm water progresses eastward or westward away from the canyon. The current carrying the water westward along the continental slope splits into different branches, influenced by the strength and extent of the Beaufort Gyre, while the eastward penetration of PSW along the shelfbreak is limited. Our results provide the first broad-scale view of how PSW is transferred from the shelf to the basin, highlighting the role of winds, boundary currents, and eddy exchange.