Greenberg Robert M.

No Thumbnail Available
Last Name
Greenberg
First Name
Robert M.
ORCID

Search Results

Now showing 1 - 4 of 4
  • Preprint
    Schistosoma mansoni P-glycoprotein levels increase in response to praziquantel exposure and correlate with reduced praziquantel susceptibility
    ( 2009-04-28) Messerli, Shanta M. ; Kasinathan, Ravi S. ; Morgan, William ; Spranger, Stefani ; Greenberg, Robert M.
    One potential physiological target for new antischistosomals is the parasite's system for excretion of wastes and xenobiotics. P-glycoprotein (Pgp), a member of the ATP-binding cassette superfamily of proteins, is an ATP-dependent efflux pump involved in transport of toxins and xenobiotics from cells. In vertebrates, increased expression of Pgp is associated with multidrug resistance in tumor cells. Pgp may also play a role in drug resistance in helminths. In this report, we examine the relationship between praziquantel (PZQ), the current drug of choice against schistosomiasis, and Pgp expression in Schistosoma mansoni. We show that levels of RNA for SMDR2, a Pgp homolog from S. mansoni, increase transiently in adult male worms following exposure to sublethal concentrations (100 - 500 nM) of PZQ. A corresponding, though delayed, increase in anti-Pgp immunoreactive protein expression occurs in adult males following exposure to PZQ. The level of anti-Pgp immunoreactivity in particular regions of adult worms also increases in response to PZQ. Adult worms from an Egyptian S. mansoni isolate with reduced sensitivity to PZQ express increased levels of SMDR2 RNA and anti-Pgp-immunoreactive protein, perhaps indicating a role for multidrug resistance proteins in development or maintenance of PZQ resistance.
  • Preprint
    Voltage-gated calcium channel subunits from platyhelminths : potential role in praziquantel action
    ( 2006-02-07) Jeziorski, Michael C. ; Greenberg, Robert M.
    Voltage-gated calcium (Ca2+) channels provide the pathway for Ca2+ influxes that underlie Ca2+-dependent responses in muscles, nerves, and other excitable cells. They are also targets of a wide variety of drugs and toxins. Ca2+ channels are multisubunit protein complexes consisting of a pore-forming α1 subunit and other modulatory subunits, including the β subunit. Here, we review the structure and function of schistosome Ca2+ channel subunits, with particular emphasis on variant Ca2+ channel β subunits (Cavβvar) found in these parasites. In particular, we examine the role these β subunits may play in the action of praziquantel, the current drug of choice against schistosomiasis. We also present evidence that Cavβvar homologs are found in other praziquantel-sensitive platyhelminths such as the pork tapeworm, Taenia solium, and that these variant β subunits may thus represent a platyhelminth-specific gene family.
  • Preprint
    Schistosoma mansoni : use of a fluorescent indicator to detect nitric oxide and related species in living parasites
    ( 2005-12-20) Kohn, Andrea B. ; Lea, Jeanne M. ; Moroz, Leonid L. ; Greenberg, Robert M.
    Nitric oxide (NO) is synthesized enzymatically by nitric oxide synthase (NOS). Several groups have previously presented evidence for NOS activity and immunoreactivity in several parasitic platyhelminths, including schistosomes. Here, we use 4,5-diaminofluorescein-2 diacetate (DAF-2 DA), a fluorescent indicator of NO, to detect NO in living schistosomes. In adult worms, DAF-2 fluorescence is found selectively in epithelial-like cells. Fluorescence increases when worms are incubated in L-arginine, the precursor of NO synthesis, and decreases dramatically in the presence of the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME), indicating that predicted NO release may be NOS-dependent, and that enzymatic NO signaling pathways may play an important role in schistosome physiology.
  • Preprint
    Ca2+ signalling, voltage-gated Ca2+ channels and praziquantel in flatworm neuromusculature
    ( 2005-10) Greenberg, Robert M.
    Transient changes in calcium (Ca2+) levels regulate a wide variety of cellular processes, and cells employ both intracellular and extracellular sources of Ca2+ for signaling. Praziquantel, the drug of choice against schistosomiasis, disrupts Ca2+ homeostasis in adult worms. This review will focus on voltage-gated Ca2+ channels, which regulate levels of intracellular Ca2+ by coupling membrane depolarization to entry of extracellular Ca2+. Ca2+ channels are members of the ion channel superfamily and represent essential components of neurons, muscles, and other excitable cells. Ca2+ channels are membrane protein complexes in which the pore-forming α1 subunit is modulated by auxiliary subunits such as β and α2δ. Schistosomes express two Ca2+ channel β subunit subtypes: a conventional subtype similar to β subunits found in other vertebrates and invertebrates; and a novel variant subtype with unusual structural and functional properties. The variant schistosome β subunit confers praziquantel sensitivity to an otherwise praziquantel-insensitive mammalian Ca2+ channel, implicating it as a mediator of praziquantel action.