Neubert Michael G.

No Thumbnail Available
Last Name
Neubert
First Name
Michael G.
ORCID
0000-0001-8820-5008

Search Results

Now showing 1 - 20 of 33
  • Article
    Sex-biased dispersal and the speed of two-sex invasions
    (University of Chicago, 2011-04-07) Miller, Tom E. X. ; Shaw, Allison K. ; Inouye, Brian D. ; Neubert, Michael G.
    Population models that combine demography and dispersal are important tools for forecasting the spatial spread of biological invasions. Current models describe the dynamics of only one sex (typically females). Such models cannot account for the sex-related biases in dispersal and mating behavior that are typical of many animal species. In this article, we construct a two-sex integrodifference equation model that overcomes these limitations. We derive an explicit formula for the invasion speed from the model and use it to show that sex-biased dispersal may significantly increase or decrease the invasion speed by skewing the operational sex ratio at the invasion’s low-density leading edge. Which of these possible outcomes occurs depends sensitively on complex interactions among the direction of dispersal bias, the magnitude of bias, and the relative contributions of females and males to local population growth.
  • Article
    Habitat damage, marine reserves, and the value of spatial management
    (Ecological Society of America, 2013-07) Moeller, Holly V. ; Neubert, Michael G.
    The biological benefits of marine reserves have garnered favor in the conservation community, but “no-take” reserve implementation is complicated by the economic interests of fishery stakeholders. There are now a number of studies examining the conditions under which marine reserves can provide both economic and ecological benefits. A potentially important reality of fishing that these studies overlook is that fishing can damage the habitat of the target stock. Here, we construct an equilibrium bioeconomic model that incorporates this habitat damage and show that the designation of marine reserves, coupled with the implementation of a tax on fishing effort, becomes both biologically and economically favorable as habitat sensitivity increases. We also study the effects of varied degrees of spatial control on fisheries management. Together, our results provide further evidence for the potential monetary and biological value of spatial management, and the possibility of a mutually beneficial resolution to the fisherman–conservationist marine reserve designation dilemma.
  • Preprint
    Effects of branching spatial structure and life history on the asymptotic growth rate of a population
    ( 2010-09-08) Goldberg, Emma E. ; Lynch, Heather J. ; Neubert, Michael G. ; Fagan, William F.
    The dendritic structure of a river network creates directional dispersal and a hierarchical arrangement of habitats. These two features have important consequences for the ecological dynamics of species living within the network.We apply matrix population models to a stage-structured population in a network of habitat patches connected in a dendritic arrangement. By considering a range of life histories and dispersal patterns, both constant in time and seasonal, we illustrate how spatial structure, directional dispersal, survival, and reproduction interact to determine population growth rate and distribution. We investigate the sensitivity of the asymptotic growth rate to the demographic parameters of the model, the system size, and the connections between the patches. Although some general patterns emerge, we find that a species’ mode of reproduction and dispersal are quite important in its response to changes in its life history parameters or in the spatial structure. The framework we use here can be customized to incorporate a wide range of demographic and dispersal scenarios.
  • Preprint
    The formation of marine kin structure : effects of dispersal, larval cohesion, and variable reproductive success
    ( 2018-08) D'Aloia, Cassidy C. ; Neubert, Michael G.
    The spatial distribution of relatives has profound e ects on kin interactions, inbreeding, and inclusive tness. Yet, in the marine environment, the processes that generate patterns of kin structure remain understudied because larval dispersal on ocean currents was historically assumed to disrupt kin associations. Recent genetic evidence of co-occurring siblings challenges this assumption and raises the intriguing question of how siblings are found together after a (potentially) disruptive larval phase. Here, we develop individual based models to explore how stochastic processes operating at the individual level a ect expected kinship at equilibrium. Speci cally, we predict how limited dispersal, sibling cohesion, and variability in reproductive success di erentially a ect patterns of kin structure. All three mechanisms increase mean kinship within populations, but their spatial e ects are markedly di erent. We nd that: (1) when dispersal is limited, kinship declines monotonically as a function of the distance between individuals; (2) when siblings disperse cohesively, kinship increases within a site relative to between sites; and (3) when reproductive success varies, kinship increases equally at all distances. The di erential e ects of these processes therefore only become apparent when individuals are sampled at multiple spatial scales. Notably, our models suggest that aggregative larval behaviors, such as sibling cohesion, are not necessary to explain documented levels of relatedness within marine populations. Together, these ndings establish a theoretical framework for disentangling the drivers of marine kin structure.
  • Preprint
    Sex differences and Allee effects shape the dynamics of sex-structured invasions
    ( 2017-02) Shaw, Allison K. ; Kokko, Hanna ; Neubert, Michael G.
    The rate at which a population grows and spreads can depend on individual behaviour and interactions with others. In many species with two sexes, males and females differ in key life history traits (e.g. growth, survival, dispersal), which can scale up to affect population rates of growth and spread. In sexually reproducing species, the mechanics of locating mates and reproducing successfully introduce further complications for predicting the invasion speed (spread rate), as both can change nonlinearly with density. Most models of population spread are based on one sex, or include limited aspects of sex differences. Here we ask whether and how the dynamics of finding mates interact with sex-specific life history traits to influence the rate of population spread. We present a hybrid approach for modelling invasions of populations with two sexes that links individual-level mating behaviour (in an individual based model) to population-level dynamics (in an integrodifference equation model). We find that limiting the amount of time during which individuals can search for mates causes a demographic Allee effect which can slow, delay or even prevent an invasion. Furthermore, any sex-based asymmetries in life history or behaviour (skewed sex ratio, sex-biased dispersal, sex-specific mating behaviours) amplify these effects. In contrast, allowing individuals to mate more than once ameliorates these effects, enabling polygynandrous populations to invade under conditions where monogamously mating populations would fail to establish. We show that details of individuals' mating behaviour can impact the rate of population spread. Based on our results, we propose a stricter definition of a mate-finding Allee effect, which is not met by the commonly used minimum mating function. Our modelling approach, which links individual and population-level dynamics in a single model, may be useful for exploring other aspects of individual behaviour that are thought to impact the rate of population spread.
  • Article
    Seasons of Syn
    (Wiley, 2019-11-19) Hunter-Cevera, Kristen R. ; Neubert, Michael G. ; Olson, Robert J. ; Shalapyonok, Alexi ; Solow, Andrew R. ; Sosik, Heidi M.
    Synechococcus is a widespread and important marine primary producer. Time series provide critical information for identifying and understanding the factors that determine abundance patterns. Here, we present the results of analysis of a 16‐yr hourly time series of Synechococcus at the Martha's Vineyard Coastal Observatory, obtained with an automated, in situ flow cytometer. We focus on understanding seasonal abundance patterns by examining relationships between cell division rate, loss rate, cellular properties (e.g., cell volume, phycoerythrin fluorescence), and environmental variables (e.g., temperature, light). We find that the drivers of cell division vary with season; cells are temperature‐limited in winter and spring, but light‐limited in the fall. Losses to the population also vary with season. Our results lead to testable hypotheses about Synechococcus ecophysiology and a working framework for understanding the seasonal controls of Synechococcus cell abundance in a temperate coastal system.
  • Article
    Employing plant functional groups to advance seed dispersal ecology and conservation
    (Oxford University Press, 2019-02-17) Aslan, Clare E. ; Beckman, Noelle G. ; Rogers, Haldre S. ; Bronstein, Judith L. ; Zurell, Damaris ; Hartig, Florian ; Shea, Katriona ; Pejchar, Liba ; Neubert, Michael G. ; Poulsen, John R. ; Hille Ris Lambers, Janneke ; Miriti, Maria ; Loiselle, Bette ; Effiom, Edu ; Zambrano, Jenny ; Schupp, Eugene W. ; Pufal, Gesine ; Johnson, Jeremy ; Bullock, James M. ; Brodie, Jedediah ; Bruna, Emilio ; Cantrell, Robert Stephen ; Decker, Robin ; Fricke, Evan ; Gurski, Katherine ; Hastings, Alan ; Kogan, Oleg ; Razafindratsima, Onja ; Sandor, Manette ; Schreiber, Sebastian ; Snell, Rebecca ; Strickland, Christopher ; Zhou, Ying
    Seed dispersal enables plants to reach hospitable germination sites and escape natural enemies. Understanding when and how much seed dispersal matters to plant fitness is critical for understanding plant population and community dynamics. At the same time, the complexity of factors that determine if a seed will be successfully dispersed and subsequently develop into a reproductive plant is daunting. Quantifying all factors that may influence seed dispersal effectiveness for any potential seed-vector relationship would require an unrealistically large amount of time, materials and financial resources. On the other hand, being able to make dispersal predictions is critical for predicting whether single species and entire ecosystems will be resilient to global change. Building on current frameworks, we here posit that seed dispersal ecology should adopt plant functional groups as analytical units to reduce this complexity to manageable levels. Functional groups can be used to distinguish, for their constituent species, whether it matters (i) if seeds are dispersed, (ii) into what context they are dispersed and (iii) what vectors disperse them. To avoid overgeneralization, we propose that the utility of these functional groups may be assessed by generating predictions based on the groups and then testing those predictions against species-specific data. We suggest that data collection and analysis can then be guided by robust functional group definitions. Generalizing across similar species in this way could help us to better understand the population and community dynamics of plants and tackle the complexity of seed dispersal as well as its disruption.
  • Article
    Detecting reactivity
    (Ecological Society of America, 2009-10) Neubert, Michael G. ; Caswell, Hal ; Solow, Andrew R.
    By definition, ecological systems at a stable equilibrium eventually return to the equilibrium point following a small perturbation. In the short term, however, perturbations can grow. Equilibria that exhibit transient growth following perturbation are said to be reactive. In this report, we present a statistical method for detecting reactivity from multivariate time series. The test is simple and computationally tractable, and it can be applied to short time series. Its main limitation is that it is based on a model of population dynamics that is linear on a logarithmic scale. Our results suggest that the test is robust when the dynamics are nonlinear on the log scale but that it may incorrectly classify an equilibrium as reactive when the reactivity is close to zero.
  • Article
    Dynamics and functional diversity of the smallest phytoplankton on the Northeast US shelf
    (National Academy of Sciences, 2020-05-15) Fowler, Bethany L. ; Neubert, Michael G. ; Hunter-Cevera, Kristen R. ; Olson, Robert J. ; Shalapyonok, Alexi ; Solow, Andrew R. ; Sosik, Heidi M.
    Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a size-structured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteria Synechococcus at the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundant Synechococcus and are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared with Synechococcus, the picoeukaryotes are subject to greater top-down control and contribute more to the region’s primary productivity than their standing stocks suggest.
  • Preprint
    Environmental drivers of salp Thalia democratica population dynamics from in situ observations
    ( 2016-12) Pascual, Maria ; Neubert, Michael G. ; Acuña, José Luis ; Solow, Andrew R. ; Dominguez-Carrió, Carlos ; Salvador, Joaquín ; Olariaga, Alejandro ; Fuentes, Veronica
    Thalia democratica blooms are a recurrent phenomenon in many coastal areas of the Mediterranean Sea and have significant ecological effects. To better understand the environmental drivers of salp blooms, we conducted 8 surveys to sample T. democratica in contrasting seasonal, temperature and chlorophyll conditions. In each survey, short-term variations in the abundances of different salp stages were assessed by sampling the same population at 30 min intervals. Using these data, we estimated the parameters in a set of stage-classified matrix population models representing different assumptions about the influence of temperature and chlorophyll on each stage. In the model that best explains our observations, only females are affected by changes in water temperature. Whether this is a direct influence of temperature or an indirect effect reflecting low food availability, female reproduction cessation seems to slow population growth under unfavourable conditions. When conditions become favourable again, females liberate the embryo and change sex to male, allowing for mating under extremely low salp densities and triggering the bloom. In contrast to previous findings, our results suggest that females, rather than oozooids, are responsible for the sustainability of salp populations during latency periods.
  • Article
    Complexity in ecology and conservation : mathematical, statistical, and computational challenges
    (American Institute of Biological Sciences, 2005-06) Green, Jessica L. ; Hastings, Alan ; Arzberger, Peter ; Ayala, Francisco J. ; Cottingham, Kathryn L. ; Cuddingham, Kim ; Davis, Frank ; Dunne, Jennifer A. ; Fortin, Marie-Josee ; Gerber, Leah ; Neubert, Michael G.
    Creative approaches at the interface of ecology, statistics, mathematics, informatics, and computational science are essential for improving our understanding of complex ecological systems. For example, new information technologies, including powerful computers, spatially embedded sensor networks, and Semantic Web tools, are emerging as potentially revolutionary tools for studying ecological phenomena. These technologies can play an important role in developing and testing detailed models that describe real-world systems at multiple scales. Key challenges include choosing the appropriate level of model complexity necessary for understanding biological patterns across space and time, and applying this understanding to solve problems in conservation biology and resource management. Meeting these challenges requires novel statistical and mathematical techniques for distinguishing among alternative ecological theories and hypotheses. Examples from a wide array of research areas in population biology and community ecology highlight the importance of fostering synergistic ties across disciplines for current and future research and application.
  • Preprint
    Dispersal delays, predator–prey stability, and the paradox of enrichment
    ( 2007-03-26) Klepac, Petra ; Neubert, Michael G. ; van den Driessche, P.
    It takes time for individuals to move from place to place. This travel time can be incorporated into metapopulation models via a delay in the interpatch migration term. Such a term has been shown to stabilize the positive equilibrium of the classical Lotka-Volterra predator{prey system with one species (either the predator or the prey) dispersing. We study a more realistic, Rosenzweig-MacArthur, model that includes a carrying capacity for the prey, and saturating functional response for the predator. We show that dispersal delays can stabilize the predator{prey equilibrium point despite the presence of a Type II functional response that is known to be destabilizing. We also show that dispersal delays reduce the amplitude of oscillations when the equilibrium is unstable, and therefore may help resolve the paradox of enrichment.
  • Article
    A model for energetics and bioaccumulation in marine mammals with applications to the right whale
    (Ecological Society of America, 2007-12) Klanjscek, Tin ; Nisbet, Roger M. ; Caswell, Hal ; Neubert, Michael G.
    We present a dynamic energy budget (DEB) model for marine mammals, coupled with a pharmacokinetic model of a lipophilic persistent toxicant. Inputs to the model are energy availability and lipid-normalized toxicant concentration in the environment. The model predicts individual growth, reproduction, bioaccumulation, and transfer of energy and toxicant from mothers to their young. We estimated all model parameters for the right whale; with these parameters, reduction in energy availability increases the age at first parturition, increases intervals between reproductive events, reduces the organisms' ability to buffer seasonal fluctuations, and increases its susceptibility to temporal shifts in the seasonal peak of energy availability. Reduction in energy intake increases bioaccumulation and the amount of toxicant transferred from mother to each offspring. With high energy availability, the toxicant load of offspring decreases with birth order. Contrary to expectations, this ordering may be reversed with lower energy availability. Although demonstrated with parameters for the right whale, these relationships between energy intake and energetics and pharmacokinetics of organisms are likely to be much more general. Results specific to right whales include energy assimilation estimates for the North Atlantic and southern right whale, influences of history of energy availability on reproduction, and a relationship between ages at first parturition and calving intervals. Our model provides a platform for further analyses of both individual and population responses of marine mammals to pollution, and to changes in energy availability, including those likely to arise through climate change.
  • Article
    A demographic and evolutionary analysis of maternal effect senescence
    (National Academy of Sciences, 2020-06-29) Hernández, Christina M. ; van Daalen, Silke F. ; Caswell, Hal ; Neubert, Michael G. ; Gribble, Kristin E.
    Maternal effect senescence—a decline in offspring survival or fertility with maternal age—has been demonstrated in many taxa, including humans. Despite decades of phenotypic studies, questions remain about how maternal effect senescence impacts evolutionary fitness. To understand the influence of maternal effect senescence on population dynamics, fitness, and selection, we developed matrix population models in which individuals are jointly classified by age and maternal age. We fit these models to data from individual-based culture experiments on the aquatic invertebrate, Brachionus manjavacas (Rotifera). By comparing models with and without maternal effects, we found that maternal effect senescence significantly reduces fitness for B. manjavacas and that this decrease arises primarily through reduced fertility, particularly at maternal ages corresponding to peak reproductive output. We also used the models to estimate selection gradients, which measure the strength of selection, in both high growth rate (laboratory) and two simulated low growth rate environments. In all environments, selection gradients on survival and fertility decrease with increasing age. They also decrease with increasing maternal age for late maternal ages, implying that maternal effect senescence can evolve through the same process as in Hamilton’s theory of the evolution of age-related senescence. The models we developed are widely applicable to evaluate the fitness consequences of maternal effect senescence across species with diverse aging and fertility schedule phenotypes.
  • Preprint
    Economically optimal marine reserves without spatial heterogeneity in a simple two-patch model
    ( 2014-07) Moeller, Holly V. ; Neubert, Michael G.
    Bioeconomic analyses of spatial fishery models have established that marine reserves can be economically optimal (i.e., maximize sustainable profit) when there is some type of spatial heterogeneity in the system. Analyses of spatially continuous models and models with more than two discrete patches have also demonstrated that marine reserves can be economically optimal even when the system is spatially homogeneous. In this note we analyze a spatially homogeneous two-patch model and show that marine reserves can be economically optimal in this case as well. The model we study includes the possibility that fishing can damage habitat. In this model, marine reserves are necessary to maximize sustainable profit when dispersal between the patches is sufficiently high and habitat is especially vulnerable to damage.
  • Article
    Marine reserves and optimal dynamic harvesting when fishing damages habitat
    (Springer, 2019-06) Kelly, Michael R., Jr. ; Neubert, Michael G. ; Lenhart, Suzanne
    Marine fisheries are a significant source of protein for many human populations. In some locations, however, destructive fishing practices have negatively impacted the quality of fish habitat and reduced the habitat’s ability to sustain fish stocks. Improving the management of stocks that can be potentially damaged by harvesting requires improved understanding of the spatiotemporal dynamics of the stocks, their habitats, and the behavior of the harvesters. We develop a mathematical model for both a fish stock as well as its habitat quality. Both are modeled using nonlinear, parabolic partial differential equations, and density dependence in the growth rate of the fish stock depends upon habitat quality. The objective is to find the dynamic distribution of harvest effort that maximizes the discounted net present value of the coupled fishery-habitat system. The value derives both from extraction (and sale) of the stock and the provisioning of ecosystem services by the habitat. Optimal harvesting strategies are found numerically. The results suggest that no-take marine reserves can be an important part of the optimal strategy and that their spatiotemporal configuration depends both on the vulnerability of habitat to fishing damage and on the timescale of habitat recovery when fishing ceases.
  • Preprint
    Density dependence in demography and dispersal generates fluctuating invasion speeds
    ( 2017-04) Sullivan, Lauren L. ; Li, Bingtuan ; Miller, Tom E. X. ; Neubert, Michael G. ; Shaw, Allison K.
    Mitigating the spread of invasive species remains difficult—substantial variability in invasion speed is increasingly well-documented, but the sources of this variability are poorly understood. We report a mechanism for invasion speed variability. The combined action of density dependence in demography and dispersal can cause invasions to fluctuate, even in constant environments. Speed fluctuations occur through creation of a pushed invasion wave that moves forward not from small populations at the leading edge but instead, from larger, more established populations that “jump” forward past the previous invasion front. Variability in strength of the push generates fluctuating invasion speeds. Conditions giving rise to fluctuations are widely documented in nature, suggesting that an important source of invasion variability may be overlooked.
  • Article
    Bioeconomics and biodiversity in harvested metacommunities : a patch-occupancy approach
    (John Wiley & Sons, 2015-11-25) Moberg, Emily A. ; Kellner, Julie B. ; Neubert, Michael G.
    We develop a coupled economic-metacommunity model to investigate the trade-off between diversity and profit for multispecies systems. The model keeps track of the presence or absence of species in habitat patches. With this approach, it becomes (relatively) simple to include more species than can typically be included in models that track species population density. We use this patch-occupancy framework to understand how profit and biodiversity are impacted by (1) community assembly, (2) pricing structures that value species equally or unequally, and (3) the implementation of marine reserves. We find that when local communities assemble slowly as a result of facilitative colonization, there are lower profits and optimal harvest rates, but the trade-off with diversity may be either large or small. The trade-off is diminished if later colonizing species are more highly valued than early colonizers. When the cost of harvesting is low, maximizing profits tends to sharply reduce biodiversity and maximizing diversity entails a large harvesting opportunity cost. In the models we analyze, marine reserves are never economically optimal for a profit-maximizing owner. However, management using marine reserves may provide low-cost biodiversity protection if the community is over-harvested.
  • Article
    When can herbivores slow or reverse the spread of an invading plant? A test case from Mount St. Helens
    (University of Chicago, 2005-10-04) Fagan, William F. ; Lewis, Mark A. ; Neubert, Michael G. ; Aumann, Craig ; Apple, Jennifer L. ; Bishop, John G.
    Here we study the spatial dynamics of a coinvading consumer-resource pair. We present a theoretical treatment with extensive empirical data from a long-studied field system in which native herbivorous insects attack a population of lupine plants recolonizing a primary successional landscape created by the 1980 volcanic eruption of Mount St. Helens. Using detailed data on the life history and interaction strengths of the lupine and one of its herbivores, we develop a system of integrodifference equations to study plant-herbivore invasion dynamics. Our analyses yield several new insights into the spatial dynamics of coinvasions. In particular, we demonstrate that aspects of plant population growth and the intensity of herbivory under low-density conditions can determine whether the plant population spreads across a landscape or is prevented from doing so by the herbivore. In addition, we characterize the existence of threshold levels of spatial extent and/or temporal advantage for the plant that together define critical values of "invasion momentum," beyond which herbivores are unable to reverse a plant invasion. We conclude by discussing the implications of our findings for successional dynamics and the use of biological control agents to limit the spread of pest species.
  • Article
    Advancing an interdisciplinary framework to study seed dispersal ecology
    (Oxford University Press, 2019-08-19) Beckman, Noelle G. ; Aslan, Clare E. ; Rogers, Haldre S. ; Kogan, Oleg ; Bronstein, Judith L. ; Bullock, James M. ; Hartig, Florian ; Hille Ris Lambers, Janneke ; Zhou, Ying ; Zurell, Damaris ; Brodie, Jedediah ; Bruna, Emilio ; Cantrell, Robert Stephen ; Decker, Robin ; Effiom, Edu ; Fricke, Evan ; Gurski, Katherine ; Hastings, Alan ; Johnson, Jeremy ; Loiselle, Bette ; Miriti, Maria ; Neubert, Michael G. ; Pejchar, Liba ; Poulsen, John R. ; Pufal, Gesine ; Razafindratsima, Onja ; Sandor, Manette ; Shea, Katriona ; Schreiber, Sebastian ; Schupp, Eugene W. ; Snell, Rebecca ; Strickland, Christopher ; Zambrano, Jenny
    Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of any single seed dispersal event within the full spatial and temporal context of a plant’s life history and environmental variability that ultimately influences a population’s ability to persist and spread. In this perspective, we provide guidance on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better understand how global change will impact seed dispersal processes, and potential cascading effects on plant population persistence, spread and biodiversity.