Robinson Laura F.

No Thumbnail Available
Last Name
First Name
Laura F.

Search Results

Now showing 1 - 20 of 31
  • Preprint
    Silicon isotopes in Antarctic sponges : an interlaboratory comparison
    ( 2010-06-08) Hendry, Katharine R. ; Leng, Melanie J. ; Robinson, Laura F. ; Sloane, Hilary J. ; Blusztajn, Jerzy S. ; Rickaby, Rosalind E. M. ; Georg, R. Bastian ; Halliday, Alex N.
    Cycling of deep-water silicon (Si) within the Southern Ocean, and its transport into other ocean basins, may be an important player in the uptake of atmospheric carbon, and global climate. Recent work has shown that the Si isotope (denoted by δ29Si or δ30Si) composition of deep-sea sponges reflects the availability of dissolved Si during growth, and is a potential proxy for past deep and intermediate water silicic acid concentrations. As with any geochemical tool, it is essential to ensure analytical precision and accuracy, and consistency between methodologies and laboratories. Analytical bias may exist between laboratories, and sponge material may have matrix effects leading to offsets between samples and standards. Here, we report an interlaboratory evaluation of Si isotopes in Antarctic and subAntarctic sponges. We review independent methods for measuring Si isotopes in sponge spicules. Our results show that separate subsamples of non-homogenised sponges measured by three methods yield isotopic values within analytical error for over 80% of specimens. The relationship between δ29Si and δ30Si in sponges is consistent with kinetic fractionation during biomineralisation. Sponge Si isotope analyses show potential as palaeoceaongraphic archives, and we suggest Southern Ocean sponge material would form a useful additional reference standard for future spicule analyses.
  • Article
    Neodymium isotopes and concentrations in aragonitic scleractinian cold-water coral skeletons - modern calibration and evaluation of palaeo-applications
    (Elsevier, 2017-01-27) Struve, Torben ; van de Flierdt, Tina ; Burke, Andrea ; Robinson, Laura F. ; Hammond, Samantha J. ; Crocket, Kirsty C. ; Bradtmiller, Louisa I. ; Auro, Maureen E. ; Mohamed, Kais J. ; White, Nicholas J.
    Cold-water corals (CWCs) are unique archives of mid-depth ocean chemistry and have been used successfully to reconstruct the neodymium (Nd) isotopic composition of seawater from a number of species. High and variable Nd concentrations in fossil corals however pose the question as to how Nd is incorporated into their skeletons. We here present new results on modern specimens of Desmophyllum dianthus, Balanophyllia malouinensis, and Flabellum curvatum, collected from the Drake Passage, and Madrepora oculata, collected from the North Atlantic. All modern individuals were either collected alive or uranium-series dated to be < 500 years old for comparison with local surface sediments and seawater profiles. Modern coral Nd isotopic compositions generally agree with ambient seawater values, which in turn are consistent with previously published seawater analyses, supporting small vertical and lateral Nd isotope gradients in modern Drake Passage waters. Two Balanophyllia malouinensis specimens collected live however deviate by up to 0.6 epsilon units from ambient seawater. We therefore recommend that this species should be treated with caution for the reconstruction of past seawater Nd isotopic compositions. Seventy fossil Drake Passage CWCs were furthermore analysed for their Nd concentrations, revealing a large range from 7.3 to 964.5 ng/g. Samples of the species D. dianthus and Caryophyllia spp. show minor covariation of Nd with 232Th content, utilised to monitor contaminant phases in cleaned coral aragonite. Strong covariations between Nd and Th concentrations are however observed in the species B. malouinensis and G. antarctica. In order to better constrain the source and nature of Nd in the cleaned aragonitic skeletons, a subset of sixteen corals was investigated for its rare earth element (REE) content, as well as major and trace element geochemistry. Our new data provide supporting evidence that the applied cleaning protocol efficiently removes contaminant lithogenic and ferromanganese oxyhydroxide phases. Mass balance calculations and seawater-like REE patterns rule out lithogenic and ferromanganese oxyhydroxide phases as a major contributor to elevated Nd concentrations in coral aragonite. Based on mass balance considerations, geochemical evidence, and previously published independent work by solid-state nuclear magnetic resonance (NMR) spectroscopy, we suggest authigenic phosphate phases as a significant carrier of skeletal Nd. Such a carrier phase could explain sporadic appearance of high Nd concentrations in corals and would be coupled with seawater-derived Nd isotopic compositions, lending further confidence to the application of Nd isotopes as a water mass proxy in CWCs.
  • Article
    Primary U distribution in scleractinian corals and its implications for U series dating
    (American Geophysical Union, 2006-05-24) Robinson, Laura F. ; Adkins, Jess F. ; Fernandez, Diego P. ; Burnett, Donald S. ; Wang, S.-L. ; Gagnon, Alexander C. ; Krakauer, Nir
    In this study we use microsampling techniques to explore diagenetic processes in carbonates. These processes are important as they can affect the accuracy of U series chronometry. Fission track maps of deep-sea scleractinian corals show a threefold difference between the minimum and maximum [U] in modern corals, which is reduced to a factor of 2 in fossil corals. We use micromilling and MC-ICP-MS to make detailed analyses of the [U] and δ234Uinitial distributions in corals from 218 ka to modern. Within each fossil coral we observe a large range of δ234Uinitial values, with high δ234Uinitial values typically associated with low [U]. A simple model shows that this observation is best explained by preferential movement of alpha-decay produced 234U atoms (alpha-recoil diffusion). Open-system addition of 234U may occur when alpha-recoil diffusion is coupled with a high [U] surface layer, such as organic material. This process can result in large, whole-coral δ234Uinitial elevations with little effect on the final age. The diagenetic pathways that we model are relevant to both shallow-water and deep-sea scleractinian corals since both exhibit primary [U] heterogeneity and may be subject to U addition.
  • Article
    Deep-sea scleractinian coral age and depth distributions in the northwest Atlantic for the last 225,000 years
    (University of Miami - Rosenstiel School of Marine and Atmospheric Science, 2007-11-01) Robinson, Laura F. ; Adkins, Jess F. ; Scheirer, Daniel S. ; Fernandez, Diego P. ; Gagnon, Alexander C. ; Waller, Rhian G.
    Deep-sea corals have grown for over 200,000 yrs on the New England Seamounts in the northwest Atlantic, and this paper describes their distribution both with respect to depth and time. Many thousands of fossil scleractinian corals were collected on a series of cruises from 2003-2005; by contrast, live ones were scarce. On these seamounts, the depth distribution of fossil Desmophyllum dianthus (Esper, 1794) is markedly different to that of the colonial scleractinian corals, extending 750 m deeper in the water column to a distinct cut-off at 2500 m. This cut-off is likely to be controlled by the maximum depth of a notch-shaped feature in the seamount morphology. The ages of D. dianthus corals as determined by U-series measurements range from modern to older than 200,000 yrs. The age distribution is not constant over time, and most corals have ages from the last glacial period. Within the glacial period, increases in coral population density at Muir and Manning Sea-mounts coincided with times at which large-scale ocean circulation changes have been documented in the deep North Atlantic. Ocean circulation changes have an effect on coral distributions, but the cause of the link is not known.
  • Preprint
    Environmental and biological controls on Mg and Li in deep-sea scleractinian corals
    ( 2010-09-06) Case, David H. ; Robinson, Laura F. ; Auro, Maureen E. ; Gagnon, Alexander C.
    Deep-sea scleractinian corals precipitate aragonite skeletons that provide valuable archives of past ocean conditions. During calcification biological mediation causes variability in trace metal incorporation and isotopic ratios of the aragonite such that signals caused by environmental controls can be overwhelmed. This complicates the interpretation of geochemical proxies used for paleo-reconstructions. In this study we examine the environmental controls on the Mg/Li ratio of 34 individuals from seven genera of deep-sea scleractinian corals: Desmophyllum, Balanophyllia, Caryophyllia, Enallopsammia, Flabellum, Trochocyanthus, and Lophelia. In addition we examine the distributions of Mg and Li in Desmophyllum and Balanophyllia using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Both Mg/Ca and Li/Ca ratios increased by more than a factor of 2 in the center of calcification regions compared to the outer, fibrous regions of the coral skeleton. As a result, replicate ~10 mg subsamples of coral show less variability in the Mg/Li ratio than Mg/Ca. Microscale Mg and Li results are consistent with Rayleigh-type incorporation of trace metals with additional processes dominating composition within centers of calcification. Comparison of Mg/Li to seawater properties near the site of collection shows that the ratio is not controlled by either carbonate ion or salinity. It appears that temperature is the major control on the Mg/Li ratio. For all 34 samples the temperature correlation (R2=0.62) is significantly better than for Mg/Ca (R2=0.06). For corals of the family Caryophyllidae the R2 value increases to 0.82 with the exclusion of one sample that was observed to have an altered, chalky texture. Despite this excellent correlation the scatter in the data suggests that the Mg/Li ratio of deep-sea corals cannot be used to reconstruct temperature to better than approximately ±1.6°C without better temperature control and additional calibration points on modern coral samples.
  • Preprint
    Erratum to “Deep ocean nutrients during the Last Glacial Maximum deduced from sponge silicon isotopic compositions” [Earth Planet. Sci. Lett. 292 (2010) 290–300]
    ( 2010-12) Hendry, Katharine R. ; Georg, R. Bastian ; Rickaby, Rosalind E. M. ; Robinson, Laura F. ; Halliday, Alex N.
    The relative importance of biological and physical processes within the Southern Ocean for the storage of carbon and atmospheric pCO2 on glacial-interglacial timescales remains uncertain. Understanding the impact of surface biological production on carbon export in the past relies on the reconstruction of the nutrient supply from upwelling deep-waters. In particular, the upwelling of silicic acid (Si(OH)4) is tightly coupled to carbon export in the Southern Ocean via diatom productivity. Here, we address how changes in deep-water Si(OH)4 concentrations can be reconstructed using the silicon isotopic composition of deep-sea sponges. We report δ30Si of modern deep-sea sponge spicules and show that they reflect seawater Si(OH)4 concentration. The fractionation factor of sponge δ30Si compared to seawater δ30Si shows a positive relationship with Si(OH)4, which may be a growth rate effect. Application of this proxy in two down-core records from the Scotia Sea reveals that Si(OH)4 concentrations in the deep Southern Ocean during the Last Glacial Maximum (LGM) were no different than today. Our result does not support a coupling of carbon and nutrient build up in an isolated deep-ocean reservoir during the LGM. Our data, combined with records of stable isotopes from diatoms, are only consistent with enhanced LGM Southern Ocean nutrient utilization if there was also a concurrent reduction in diatom silicification or a shift from siliceous to organic-walled phytoplankton.
  • Preprint
    Testing models of thorium and particle cycling in the ocean using data from station GT11-22 of the U.S. GEOTRACES North Atlantic section
    ( 2016-03-31) Lerner, Paul ; Marchal, Olivier ; Lam, Phoebe J. ; Anderson, Robert F. ; Buesseler, Ken O. ; Charette, Matthew A. ; Edwards, R. Lawrence ; Hayes, Christopher T. ; Huang, Kuo-Fang ; Lu, Yanbin ; Robinson, Laura F. ; Solow, Andrew R.
    Thorium is a highly particle-reactive element that possesses different measurable radio-isotopes in seawater, with well-constrained production rates and very distinct half-lives. As a result, Th has emerged as a key tracer for the cycling of marine particles and of their chemical constituents, including particulate organic carbon. Here two different versions of a model of Th and particle cycling in the ocean are tested using an unprecedented data set from station GT11-22 of the U.S. GEOTRACES North Atlantic Section: (i) 21 228;230;234Th activities of dissolved and particulate fractions, (ii) 228Ra activities, (iii) 234;238U activities estimated from salinity data and an assumed 234U/238U ratio, and (iv) particle concentrations, below a depth of 125 m. The two model versions assume a single class of particles but rely on different assumptions about the rate parameters for sorption reactions and particle processes: a first version (V1) assumes vertically uniform parameters (a popular description), whereas the second (V2) does not. Both versions are tested by fitting to the GT11-22 data using generalized nonlinear least squares and by analyzing residuals normalized to the data errors. We find that model V2 displays a significantly better fit to the data than model V1. Thus, the mere allowance of vertical variations in the rate parameters can lead to a significantly better fit to the data, without the need to modify the structure or add any new processes to the model. To understand how the better fit is achieved we consider two parameters, K = k1=(k-1 + β-1) and K/P, where k1 is the adsorption rate constant, k-1 the desorption rate constant, β-1 the remineralization rate constant, and P the particle concentration. We find that the rate constant ratio K is large (≥0.2) in the upper 1000 m and decreases to a nearly uniform value of ca. 0.12 below 2000 m, implying that the specific rate at which Th attaches to particles relative to that at which it is released from particles is higher in the upper ocean than in the deep ocean. In contrast, K/P increases with depth below 500 m. The parameters K and K/P display significant positive and negative monotonic relationship with P, respectively, which is collectively consistent with a particle concentration effect.
  • Preprint
    Th-230 and Pa-231 on GEOTRACES GA03, the US GEOTRACES North Atlantic transect, and implications for modern and paleoceanographic chemical fluxes
    ( 2014-07) Hayes, Christopher T. ; Anderson, Robert F. ; Fleisher, Martin Q. ; Huang, Kuo-Fang ; Robinson, Laura F. ; Lu, Yanbin ; Cheng, Hai ; Edwards, R. Lawrence ; Moran, S. Bradley
    The long-lived uranium decay products 230Th and 231Pa are widely used as quantitative tracers of adsorption to sinking particles (scavenging) in the ocean by exploiting the principles of radioactive disequilibria. Because of their preservation in the Pleistocene sediment record and through largely untested assumptions about their chemical behavior in the water column, the two radionuclides have also been used as proxies for a variety of chemical fluxes in the past ocean. This includes the vertical flux of particulate matter to the seafloor, the lateral flux of insoluble elements to continental margins (boundary scavenging), and the southward flux of water out of the deep North Atlantic. In a section of unprecedented vertical and zonal resolution, the distributions of 230Th and 231Pa across the North Atlantic shed light on the marine cycling of these radionuclides and further inform their use as tracers of chemical flux. Enhanced scavenging intensities are observed in benthic layers of resuspended sediments on the eastern and western margins and in a hydrothermal plume emanating from the Mid-Atlantic Ridge. Boundary scavenging is clearly expressed in the water column along a transect between Mauritania and Cape Verde which is used to quantify a bias in sediment fluxes calculated using 230Th-normalization and to demonstrate enhanced 231Pa removal from the deep North Atlantic by this mechanism. The influence of deep ocean ventilation that leads to the southward export of 231Pa is apparent. The 231Pa/230Th ratio, however, predominantly reflects spatial variability in scavenging intensity, complicating its applicability as a proxy for the Atlantic meridional overturning circulation.
  • Article
    Neodymium isotope analyses after combined extraction of actinide and lanthanide elements from seawater and deep-sea coral aragonite
    (John Wiley & Sons, 2016-01-09) Struve, Torben ; van de Flierdt, Tina ; Robinson, Laura F. ; Bradtmiller, Louisa I. ; Hines, Sophia K. ; Adkins, Jess F. ; Lambelet, Myriam ; Crocket, Kirsty C. ; Kreissig, Katharina ; Coles, Barry ; Auro, Maureen E.
    Isotopes of the actinide elements protactinium (Pa), thorium (Th), and uranium (U), and the lanthanide element neodymium (Nd) are often used as complementary tracers of modern and past oceanic processes. The extraction of such elements from low abundance matrices, such as seawater and carbonate, is however labor-intensive and requires significant amounts of sample material. We here present a combined method for the extraction of Pa, Th, and Nd from 5 to 10 L seawater samples, and of U, Th, and Nd from <1 g carbonate samples. Neodymium is collected in the respective wash fractions of Pa-Th and U-Th anion exchange chromatographies. Regardless of the original sample matrix, Nd is extracted during a two-stage ion chromatography, followed by thermal ionization mass spectrometry (TIMS) analysis as NdO+. Using this combined procedure, we obtained results for Nd isotopic compositions on two GEOTRACES consensus samples from Bermuda Atlantic Time Series (BATS), which are within error identical to results for separately sampled and processed dedicated Nd samples (εNd = −9.20 ± 0.21 and −13.11 ± 0.21 for 15 and 2000 m water depths, respectively; intercalibration results from 14 laboratories: εNd = −9.19 ± 0.57 and −13.14 ± 0.57). Furthermore, Nd isotope results for an in-house coral reference material are identical within analytical uncertainty for dedicated Nd chemistry and after collection of Nd from U-Th anion exchange chromatography. Our procedure does not require major adaptations to independently used ion exchange chromatographies for U-Pa-Th and Nd, and can hence be readily implemented for a wide range of applications.
  • Article
    Low reservoir ages for the surface ocean from mid-Holocene Florida corals
    (American Geophysical Union, 2008-05-13) Druffel, Ellen R. M. ; Robinson, Laura F. ; Griffin, Sheila ; Halley, Robert B. ; Southon, John R. ; Adkins, Jess F.
    The 14C reservoir age of the surface ocean was determined for two Holocene periods (4908–4955 and 3008–3066 calendar (cal) B.P.) using U/Th-dated corals from Biscayne National Park, Florida, United States. We found that the average reservoir ages for these two time periods (294 ± 33 and 291 ± 27 years, respectively) were lower than the average value between A.D. 1600 and 1900 (390 ± 60 years) from corals. It appears that the surface ocean was closer to isotopic equilibrium with CO2 in the atmosphere during these two time periods than it was during recent times. Seasonal δ 18O measurements from the younger coral are similar to modern values, suggesting that mixing with open ocean waters was indeed occurring during this coral's lifetime. Likely explanations for the lower reservoir age include increased stratification of the surface ocean or increased Δ14C values of subsurface waters that mix into the surface. Our results imply that a more correct reservoir age correction for radiocarbon measurements of marine samples in this location from the time periods ∼3040 and ∼4930 cal years B.P. is ∼292 ± 30 years, less than the canonical value of 404 ± 20 years.
  • Preprint
    Carbonate as sputter target material for rapid 14C AMS
    ( 2012-04-17) Longworth, Brett E. ; Robinson, Laura F. ; Roberts, Mark L. ; Beaupre, Steven R. ; Burke, Andrea ; Jenkins, William J.
    This paper describes a technique for measuring the 14C content of carbonate samples by producing C-ions directly in the negative ion sputter source of an accelerator mass spectrometer (AMS) system. This direct analysis of carbonate material eliminates the time and expense of graphite preparation. Powdered carbonate is mixed with titanium powder, loaded into a target cartridge, and compressed. Beam currents for optimally sized carbonate targets (0.09-0.15 mg C) are typically 10-20% of those produced by optimally-sized graphite targets (0.5-1 mg C). Modern (>0.8 Fm) samples run by this method have standard deviations of 0.009 Fm or less, and near-modern samples run as unknowns agree with values from traditional hydrolysis/graphite to better than 2%. Targets with as little as 0.06 mg carbonate produce useable ion currents and results, albeit with increased error and larger blank. In its current state, direct sputtering is best applied to problems where a large number of analyses with lower precision are required. These applications could include age surveys of deep-sea corals for determination of historic population dynamics, to identify samples that would benefit from high precision analysis, and for growth rate studies of organisms forming carbonate skeletons.
  • Article
    Interlaboratory study for coral Sr/Ca and other element/Ca ratio measurements
    (John Wiley & Sons, 2013-09-23) Hathorne, Ed C. ; Gagnon, Alexander C. ; Felis, Thomas ; Adkins, Jess F. ; Asami, Ryuji ; Boer, Wim ; Caillon, Nicolas ; Case, David H. ; Cobb, Kim M. ; Douville, Eric ; deMenocal, Peter B. ; Eisenhauer, Anton ; Garbe-Schonberg, Dieter ; Geibert, Walter ; Goldstein, Steven L. ; Hughen, Konrad A. ; Inoue, Mayuri ; Kawahata, Hodaka ; Kolling, Martin ; Cornec, Florence L. ; Linsley, Braddock K. ; McGregor, Helen V. ; Montagna, Paolo ; Nurhati, Intan S. ; Quinn, Terrence M. ; Raddatz, Jacek ; Rebaubier, Helene ; Robinson, Laura F. ; Sadekov, Aleksey ; Sherrell, Robert M. ; Sinclair, Dan ; Tudhope, Alexander W. ; Wei, Gangjian ; Wong, Henri ; Wu, Henry C. ; You, Chen-Feng
    The Sr/Ca ratio of coral aragonite is used to reconstruct past sea surface temperature (SST). Twenty-one laboratories took part in an interlaboratory study of coral Sr/Ca measurements. Results show interlaboratory bias can be significant, and in the extreme case could result in a range in SST estimates of 7°C. However, most of the data fall within a narrower range and the Porites coral reference material JCp-1 is now characterized well enough to have a certified Sr/Ca value of 8.838 mmol/mol with an expanded uncertainty of 0.089 mmol/mol following International Association of Geoanalysts (IAG) guidelines. This uncertainty, at the 95% confidence level, equates to 1.5°C for SST estimates using Porites, so is approaching fitness for purpose. The comparable median within laboratory error is <0.5°C. This difference in uncertainties illustrates the interlaboratory bias component that should be reduced through the use of reference materials like the JCp-1. There are many potential sources contributing to biases in comparative methods but traces of Sr in Ca standards and uncertainties in reference solution composition can account for half of the combined uncertainty. Consensus values that fulfil the requirements to be certified values were also obtained for Mg/Ca in JCp-1 and for Sr/Ca and Mg/Ca ratios in the JCt-1 giant clam reference material. Reference values with variable fitness for purpose have also been obtained for Li/Ca, B/Ca, Ba/Ca, and U/Ca in both reference materials. In future, studies reporting coral element/Ca data should also report the average value obtained for a reference material such as the JCp-1.
  • Preprint
    Carbonate veins trace seawater circulation during exhumation and uplift of mantle rock : results from ODP Leg 209
    ( 2011-09-02) Bach, Wolfgang ; Rosner, Martin ; Jons, Niels ; Rausch, Svenja ; Robinson, Laura F. ; Paulick, Holger ; Erzinger, Jorg
    Carbonate veins hosted in ultramafic basement drilled at two sites in the Mid Atlantic Ridge 15°N area record two different stages of fluid-basement interaction. A first generation of carbonate veins consists of calcite and dolomite that formed syn- to postkinematically in tremolite–chlorite schists and serpentine schists that represent gently dipping large-offset faults. These veins formed at temperatures between 90 and 170 °C (oxygen isotope thermometry) and from fluids that show intense exchange of Sr and Li with the basement (87Sr/86Sr = 0.70387 to 0.70641, δ7LiL-SVEC = + 3.3 to + 8.6‰). Carbon isotopic compositions range to high δ13CPDB values (+ 8.7‰), indicating that methanogenesis took place at depth. The Sr–Li–C isotopic composition suggests temperatures of fluid-rock interaction that are much higher (T > 350–400 °C) than the temperatures of vein mineral precipitation inferred from oxygen isotopes. A possible explanation for this discrepancy is that fluids cooled conductively during upflow within the presumed detachment fault. Aragonite veins were formed during the last 130 kyrs at low-temperatures within the uplifted serpentinized peridotites. Chemical and isotopic data suggest that the aragonites precipitated from cold seawater, which underwent overall little exchange with the basement. Oxygen isotope compositions indicate an increase in formation temperature of the veins by 8–12 °C within the uppermost ~ 80 m of the subseafloor. This increase corresponds to a high regional geothermal gradient of 100–150 °C/km, characteristic of young lithosphere undergoing rapid uplift.
  • Article
    GEOTRACES intercalibration of 230Th, 232Th, 231Pa, and prospects for 10Be
    (Association for the Sciences of Limnology and Oceanography, 2012-04) Anderson, Robert F. ; Fleisher, Martin Q. ; Robinson, Laura F. ; Edwards, R. Lawrence ; Hoff, John A. ; Moran, S. Bradley ; Rutgers van der Loeff, Michiel M. ; Thomas, Alexander L. ; Roy-Barman, Matthieu ; Francois, Roger
    Nineteen labs representing nine nations participated in the GEOTRACES intercalibration initiative that determined concentrations of 232Th, 230Th, 231Pa, or 10Be in seawater, suspended particles or sediments. Results generally demonstrated good agreement among labs that analyzed marine sediments. Two sets of seawater samples, aliquots of particulate material filtered in situ, and/or aliquots of biogenic sediments were distributed to participating labs. Internal consistency among participating labs improved substantially between the first and second set of seawater samples. Contamination was a serious problem for 232Th. Standard Niskin bottles introduced no detectable contamination, whereas sample containers, reagents, and labware were implicated as sources of contamination. No detectable differences in concentrations of dissolved 232Th, 230Th, or 231Pa were observed among samples of seawater filtered through Nuclepore, Supor, or QMA (quartz) filters with pore diameters ranging between 0.4 and 1.0 μm. Isotope yield monitors equilibrate with dissolved Th in seawater on a time scale of much less than 1 day. Samples of filtered seawater acidified to a pH between 1.7 and 1.8 experienced no detectable loss of dissolved Th or Pa during storage for up to 3 years. The Bermuda Atlantic Time Series station will serve as a GEOTRACES baseline station for future intercalibration of 232Th and 230Th concentrations in seawater. Efforts to improve blanks and standard calibration are ongoing, as is the development of methods to determine concentrations of particulate nuclides, tests of different filtration methods, and an increasing awareness of the need to define protocols for reporting uncertainties.
  • Preprint
    Deep ocean nutrients during the Last Glacial Maximum deduced from sponge silicon isotopic compositions
    ( 2010-02) Hendry, Katharine R. ; Georg, R. Bastian ; Rickaby, Rosalind E. M. ; Robinson, Laura F. ; Halliday, Alex N.
    The relative importance of biological and physical processes within the Southern Ocean for the storage of carbon and atmospheric pCO2 on glacial-interglacial timescales remains uncertain. Understanding the impact of surface biological production on carbon export in the past relies on the reconstruction of the nutrient supply from upwelling deep-waters. In particular, the upwelling of silicic acid (Si(OH)4) is tightly coupled to carbon export in the Southern Ocean via diatom productivity. Here, we address how changes in deep-water Si(OH)4 concentrations can be reconstructed using the silicon isotopic composition of deep-sea sponges. We report δ30Si of modern deep-sea sponge spicules and show that they reflect seawater Si(OH)4 concentration. The fractionation factor of sponge δ30Si compared to seawater δ30Si shows a positive relationship with Si(OH)4, which may be a growth rate effect. Application of this proxy in two down-core records from the Scotia Sea reveals that Si(OH)4 concentrations in the deep Southern Ocean during the Last Glacial Maximum (LGM) were no different than today. Our result does not support a coupling of carbon and nutrient build up in an isolated deep-ocean reservoir during the LGM. Our data, combined with records of stable isotopes from diatoms, are only consistent with enhanced LGM Southern Ocean nutrient utilization if there was also a concur rent reduction in diatom silicification or a shift from siliceous to organic walled phytoplankton.
  • Article
    Ancient DNA techniques : applications for deep-water corals
    (University of Miami - Rosenstiel School of Marine and Atmospheric Science, 2007-11-01) Waller, Rhian G. ; Adkins, Jess F. ; Robinson, Laura F. ; Shank, Timothy M.
    The potential applications of ancient DNA (aDNA) techniques have been realized relatively recently, and have been revolutionized by the advent of pCR techniques in the mid 1980s. Although these techniques have been proven valuable in ancient specimens of up to 100,000 yrs old, their use in the marine realm has been largely limited to mammals and fish. Using modifications of techniques developed for skeletons of whales and mammals, we have produced a method for extracting and amplifying aDNA from sub-fossil (not embedded in rock) deep-water corals that has been successful in yielding 351 base pairs of the ITS2 region in sub-fossil Desmophyllum dianthus (Esper, 1794) and Lophelia pertusa (Linnaeus, 1758). The comparison of DNA sequences from fossil and live specimens resulted in clustering by species, demonstrating the validity of this new aDNA method. Sub-fossil scler-actinian corals are readily dated using U-series techniques, and so the abundance of directly-dateable skeletons in the world's oceans, provides an extremely useful archive for investigating the interactions of environmental pressures (in particular ocean circulation, climate change) on the past distribution, and the evolution of deep-water corals across the globe.
  • Article
    Exploring B/Ca as a pH proxy in bivalves : relationships between Mytilus californianus B/Ca and environmental data from the northeast Pacific
    (Copernicus Publications on behalf of the European Geosciences Union, 2011-09-13) McCoy, S. J. ; Robinson, Laura F. ; Pfister, Catherine A. ; Wootton, J. T. ; Shimizu, Nobumichi
    A distinct gap in our ability to understand changes in coastal biology that may be associated with recent ocean acidification is the paucity of directly measured ocean environmental parameters at coastal sites in recent decades. Thus, many researchers have turned to sclerochronological reconstructions of water chemistry to document the historical seawater environment. In this study, we explore the relationships between B/Ca and pH to test the feasibility of B/Ca measured on the ion probe as a pH proxy in the California mussel, Mytilus californianus. Heterogeneity in a range of ion microprobe standards is assessed, leading to reproducible B/Ca ratios at the 5% level. The B/Ca data exhibit large excursions during winter months, which are particularly pronounced during the severe winters of 2004–2005 and 2005–2006. Furthermore, B/Ca ratios are offset in different parts of the skeleton that calcified at the same time. We compare the M. californianus B/Ca record to directly measured environmental data during mussel growth from the period of 1999–2009 to examine whether seawater chemistry or temperature plays a role in controlling shell B/Ca. A suite of growth rate models based on measured temperature are compared to the B/Ca data to optimise the potential fit of B/Ca to pH. Despite sampling conditions that were well-suited to testing a pH control on B/Ca, including a close proximity to an environmental record, a distinct change in pH at the sampling locale, and a growth model designed to optimise the correlations between seawater pH and shell B/Ca, we do not see a strong correlations between pH and shell B/Ca (maximum coefficient of determination, r2, of 0.207). Instead, our data indicate a strong biological control on B/Ca as observed in some other carbonate-forming organisms.
  • Article
    Temporal stability of the neodymium isotope signature of the Holocene to glacial North Atlantic
    (American Geophysical Union, 2006-11-25) van de Flierdt, Tina ; Robinson, Laura F. ; Adkins, Jess F. ; Hemming, Sidney R. ; Goldstein, Steven L.
    The neodymium isotopic composition of marine precipitates is increasingly recognized as a powerful tool for identifying changes in ocean circulation and mixing on million year to millennial time-scales. Unlike nutrient proxies such as δ13C or Cd/Ca, Nd isotopes are not thought to be altered in any significant way by biological processes, and thus can serve as a quasi-conservative water mass tracer. However, the application of Nd isotopes in understanding the role of thermohaline circulation in rapid climate change is currently hindered by the lack of direct constraints on the signature of the North Atlantic end-member through time. Here we present the first results of Nd isotopes measured in U-Th dated deep-sea corals from the New England seamounts in the northwest Atlantic Ocean. Our data are consistent with the conclusion that the Nd isotopic composition of North Atlantic deep and intermediate water has remained nearly constant through the last glacial cycle. The results address longstanding concerns that there may have been significant changes in the Nd isotopic composition of the North Atlantic end member during this interval, and substantiate the applicability of this novel tracer on millennial time-scales for palaeoceanography research.
  • Preprint
    Silicon isotopes indicate enhanced carbon export efficiency in the North Atlantic during deglaciation
    ( 2013-11-11) Hendry, Katharine R. ; Robinson, Laura F. ; McManus, Jerry F. ; Hays, James D.
    Today's Sargasso Sea is nutrient-starved, except for episodic upwelling events caused by wind-driven winter mixing and eddies. Enhanced diatom opal burial in Sargasso Sea sediments indicates that silicic acid, a limiting nutrient today, may have been more available in subsurface waters during Heinrich Stadials, the millennial-scale climate perturbations of the last glacial and deglaciation. Here we use the geochemistry of opalforming organisms from different water depths to demonstrate changes in silicic acid supply and utilisation during the most recent Heinrich Stadial. We suggest that during the early phase (17.5-18 ka), wind-driven upwelling replenished silicic acid to the subsurface, resulting in low Si utilisation. By 17ka, stratification reduced the surface silicic acid supply and increased Si utilization efficiency. This abrupt shift in Si cycling would have contributed to high regional carbon export efficiency during the recent Heinrich Stadial, despite being a period of increasing atmospheric CO2.
  • Article
    Improvements to 232-thorium, 230-thorium, and 231- protactinium analysis in seawater arising from GEOTRACES intercalibration
    (Association for the Sciences of Limnology and Oceanography, 2012-07) Auro, Maureen E. ; Robinson, Laura F. ; Burke, Andrea ; Bradtmiller, Louisa I. ; Fleisher, Martin Q. ; Anderson, Robert F.
    The GEOTRACES program requires the analysis of large numbers of seawater samples for 232Th, 230Th, and 231Pa. During the GEOTRACES international intercalibration exercise, we encountered unexpected difficulties with recovery and contamination of these isotopes, 232Th in particular. Experiments were carried out to identify the source of these issues, leading to a more streamlined and efficient procedure. The two particular problems that we identified and corrected were (1) frits in columns supplied by Bio-Rad Laboratories caused loss of Th during column chemistry and (2) new batches of AG1-X8 resin supplied by Bio-Rad Laboratories released more than 100 pg of 232Th during elution of sample. To improve yields and blanks, we implemented a series of changes including switching to Eichrom anion exchange resin (100-200 μm mesh) and Environmental Express columns. All Th and Pa samples were analyzed on a Neptune multi-collector inductively-coupled-plasma mass spectrometer (MC-ICP-MS) using peak hopping of 230Th and 229Th on the central SEM, with either 232Th, 236U (or both) used to monitor for beam intensity. We used in-house laboratory standards to check for machine reproducibility, and the GEOTRACES intercalibration standard to check for accuracy. Over a 1-y period, the 2 s.d. reproducibility on the GEOTRACES SW STD 2010-1 was 2.5% for 230Th, 1.8% for 232Th, and 4% for 231Pa. The lessons learned during this intercalibration process will be of value to those analyzing U-Th-Pa and rare earth elements as part of the GEOTRACES program as well as those using U-series elements in other applications that require high yields and low blanks, such as geochronology.