Montes Enrique

No Thumbnail Available
Last Name
Montes
First Name
Enrique
ORCID

Search Results

Now showing 1 - 5 of 5
  • Article
    Satellite remote sensing and the Marine Biodiversity Observation Network: current science and future steps
    (Oceanography Society, 2021-11-09) Kavanaugh, Maria T. ; Bell, Tom W. ; Catlett, Dylan ; Cimino, Megan A. ; Doney, Scott C. ; Klajbor, Willem ; Messie, Monique ; Montes, Enrique ; Muller-Karger, Frank E. ; Otis, Daniel ; Santora, Jarrod A ; Schroeder, Isaac D. ; Trinanes, Joaquin ; Siegel, David A.
    Coastal ecosystems are rapidly changing due to human-caused global warming, rising sea level, changing circulation patterns, sea ice loss, and acidification that in turn alter the productivity and composition of marine biological communities. In addition, regional pressures associated with growing human populations and economies result in changes in infrastructure, land use, and other development; greater extraction of fisheries and other natural resources; alteration of benthic seascapes; increased pollution; and eutrophication. Understanding biodiversity is fundamental to assessing and managing human activities that sustain ecosystem health and services and mitigate humankind’s indiscretions. Remote-sensing observations provide rapid and synoptic data for assessing biophysical interactions at multiple spatial and temporal scales and thus are useful for monitoring biodiversity in critical coastal zones. However, many challenges remain because of complex bio-optical signals, poor signal retrieval, and suboptimal algorithms. Here, we highlight four approaches in remote sensing that complement the Marine Biodiversity Observation Network (MBON). MBON observations help quantify plankton community composition, foundation species, and unique species habitat relationships, as well as inform species distribution models. In concert with in situ observations across multiple platforms, these efforts contribute to monitoring biodiversity changes in complex coastal regions by providing oceanographic context, contributing to algorithm and indicator development, and creating linkages between long-term ecological studies, the next generations of satellite sensors, and marine ecosystem management.
  • Dataset
    CARIACO time series individual CTD profiles from B/O Hermano Gines HG93_CARIACO in the CARIACO basin from 1995-2017 (CARIACO project)
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-07-17) Muller-Karger, Frank ; Astor, Yrene ; Benitez-Nelson, Claudia ; Buck, Kristen N. ; Fanning, Kent ; Scranton, Mary I. ; Taylor, Gordon T. ; Thunell, Robert C. ; Varela, Ramon ; Capelo, Juan ; Gutierrez, Javier ; Guzman, Laurencia ; Lorenzoni, Laura ; Montes, Enrique ; Rojas, Jaimie ; Rondon, Anadiuska ; Rueda-Roa, Digna
    This collection of data comprises all the Individual CTD profiles from the Cariaco basin taken as part of the CARIACO Ocean Time-Series Program from November 1995 to January 2017. These include all the CTD profiles taken during the monthly hydrographic cruises at the CARIACO station (10.50° N, 64.67° W), as well as other CTD profiles from extra legs of the monthly cruises, and few spatial cruises collected in and around the Cariaco basin. CTD’s Salinity and Oxygen where calibrated with in-situ measurements (see Acquisition Description). This dataset is complimentary to the monthly “CTD Composite Profiles” (https://www.bco-dmo.org/dataset/3092), and many fields are very similar to that data-base. The difference with that dataset, is that here we present all the CTD casts for each cruise, the CTD profiles are single (not composite), and the salinity and oxygen profiles were calibrated with in-situ measurements, but fluorescence was no calibrated. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/773146
  • Dataset
    Time-series Niskin-bottle sample data from R/V Hermano Gines cruises in the Cariaco Basin from 1995 through 2017 (CARIACO Ocean Time-Series Program)
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-06-07) Muller-Karger, Frank ; Astor, Yrene ; Scranton, Mary I. ; Taylor, Gordon T. ; Thunell, Robert C. ; Varela, Ramon ; Benitez-Nelson, Claudia ; Buck, Kristen N. ; Fanning, Kent ; Capelo, Juan ; Gutierrez, Javier ; Guzman, Laurencia ; Lorenzoni, Laura ; Montes, Enrique ; Rojas, Jaimie ; Rondon, Anadiuska ; Rueda-Roa, Digna ; Tappa, Eric
    The CARIACO Ocean Time-Series Program (formerly known as CArbon Retention In A Colored Ocean) started on November 1995 (CAR-001) and ended on January 2017 (CAR-232). Monthly cruises were conducted to the CARIACO station (10.50° N, 64.67° W) onboard the R/V Hermano Ginés of the Fundación La Salle de Ciencias Naturales de Venezuela. During each cruise, a minimum of four hydrocasts were performed to collect a suite of core monthly observations. We conducted separate shallow and deep casts to obtain a better vertical resolution of in-situ Niskin-bottles samples for chemical observations, and for productivity, phytoplankton, and pigment observations. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/3093
  • Article
    A framework for a marine biodiversity observing network within changing continental shelf seascapes
    (The Oceanography Society, 2014-06) Muller-Karger, Frank E. ; Kavanaugh, Maria T. ; Montes, Enrique ; Balch, William M. ; Breitbart, Mya ; Chavez, Francisco P. ; Doney, Scott C. ; Johns, Elizabeth M. ; Letelier, Ricardo M. ; Lomas, Michael W. ; Sosik, Heidi M. ; White, Angelicque E.
    Continental shelves and the waters overlying them support numerous industries as diverse as tourism and recreation, energy extraction, fisheries, transportation, and applications of marine bio-molecules (e.g., agribusiness, food processing, pharmaceuticals). Although these shelf ecosystems exhibit impacts of climate change and increased human use of resources (Halpern et al., 2012; IPCC, 2013, 2014; Melillo et al., 2014), there are currently no standardized metrics for assessing changes in ecological function in the coastal ocean. Here, we argue that it is possible to monitor vital signs of ecosystem function by focusing on the lowest levels of the ocean food web. Establishment of biodiversity, biomass, and primary productivity baselines and continuous evaluation of changes in biological resources in these economically and ecologically valuable regions requires an internationally coordinated monitoring effort that fully integrates natural, social, and economic sciences to jointly identify problems and design solutions. Such an ocean observing network is needed to protect the livelihoods of coastal communities in the context of the goals of the Future Earth program (Mooney et al., 2013) and of the Intergovernmental Platform on Biodiversity and Ecosystem Services (http://www.ipbes.net). The tools needed to initiate these assessments are available today.
  • Dataset
    Time series composite CTD profiles from R/V Hermano Ginés cruises in the Cariaco Basin from 1995 through 2017 (CARIACO Ocean Time-Series Program)
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-06-06) Muller-Karger, Frank ; Astor, Yrene ; Benitez-Nelson, Claudia ; Scranton, Mary I. ; Taylor, Gordon T. ; Thunell, Robert C. ; Varela, Ramon ; Capelo, Juan ; Guzman, Laurencia ; Lorenzoni, Laura ; Montes, Enrique ; Rojas, Jaimie ; Rueda-Roa, Digna
    The CARIACO Ocean Time-Series Program (formerly known as CArbon Retention In A Colored Ocean) started on November 1995 (CAR-001) and ended on January 2017 (CAR-232). Monthly cruises were conducted to the CARIACO station (10.50° N, 64.67° W) onboard the R/V Hermano Ginés of the Fundación La Salle de Ciencias Naturales de Venezuela. During each cruise, a minimum of four hydrocasts were performed to collect a suite of core monthly observations. We conducted separate shallow and deep casts to obtain a better vertical resolution of in-situ Niskin-bottles samples for chemical observations, and for productivity, phytoplankton, and pigment observations. One CTD composite profile was created for each cruise by stitching together the sections of the different cruise's CTD profiles at the depth interval where water samples were obtained. CTD’s Salinity, Oxygen, and Fluorescence where calibrated with in-situ measurements. The composite CTD profiles dataset is a complement of the hydrographic time series data obtained with the Niskin Bottle Samples (https://www.bco-dmo.org/dataset/3093). The following sections describe the methods used in collecting the core observations at the CARIACO station. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/3092