Munoz Samuel E.

No Thumbnail Available
Last Name
First Name
Samuel E.

Search Results

Now showing 1 - 5 of 5
  • Article
    El Niño increases the risk of lower Mississippi River flooding
    (Nature Publishing Group, 2017-05-11) Munoz, Samuel E. ; Dee, Sylvia G.
    Mississippi River floods rank among the costliest climate-related disasters in the world. Improving flood predictability, preparedness, and response at seasonal to decadal time-scales requires an understanding of the climatic controls that govern flood occurrence. Linking flood occurrence to persistent modes of climate variability like the El Niño-Southern Oscillation (ENSO) has proven challenging, due in part to the limited number of high-magnitude floods available for study in the instrumental record. To augment the relatively short instrumental record, we use output from the Community Earth System Model (CESM) Last Millennium Ensemble (LME) to investigate the dynamical controls on discharge extremes of the lower Mississippi River. We show that through its regional influence on surface water storage, the warm phase of ENSO preconditions the lower Mississippi River to be vulnerable to flooding. In the 6–12 months preceding a flood, El Niño generates a positive precipitation anomaly over the lower Mississippi basin that gradually builds up soil moisture and reduces the basin’s infiltration capacity, thereby elevating the risk of a major flood during subsequent rainstorms. Our study demonstrates how natural climate variability mediates the formation of extreme floods on one of the world’s principal commercial waterways, adding significant predictive ability to near- and long-term forecasts of flood risk.
  • Article
    Neoglacial climate anomalies and the Harappan metamorphosis
    (Copernicus Publications on behalf of the European Geosciences Union, 2018-11-13) Giosan, Liviu ; Orsi, William D. ; Coolen, Marco J. L. ; Wuchter, Cornelia ; Dunlea, Ann G. ; Thirumalai, Kaustubh ; Munoz, Samuel E. ; Clift, Peter D. ; Donnelly, Jeffrey P. ; Galy, Valier ; Fuller, Dorian Q.
    Climate exerted constraints on the growth and decline of past human societies but our knowledge of temporal and spatial climatic patterns is often too restricted to address causal connections. At a global scale, the inter-hemispheric thermal balance provides an emergent framework for understanding regional Holocene climate variability. As the thermal balance adjusted to gradual changes in the seasonality of insolation, the Intertropical Convergence Zone migrated southward accompanied by a weakening of the Indian summer monsoon. Superimposed on this trend, anomalies such as the Little Ice Age point to asymmetric changes in the extratropics of either hemisphere. Here we present a reconstruction of the Indian winter monsoon in the Arabian Sea for the last 6000 years based on paleobiological records in sediments from the continental margin of Pakistan at two levels of ecological complexity: sedimentary ancient DNA reflecting water column environmental states and planktonic foraminifers sensitive to winter conditions. We show that strong winter monsoons between ca. 4500 and 3000 years ago occurred during a period characterized by a series of weak interhemispheric temperature contrast intervals, which we identify as the early neoglacial anomalies (ENA). The strong winter monsoons during ENA were accompanied by changes in wind and precipitation patterns that are particularly evident across the eastern Northern Hemisphere and tropics. This coordinated climate reorganization may have helped trigger the metamorphosis of the urban Harappan civilization into a rural society through a push–pull migration from summer flood-deficient river valleys to the Himalayan piedmont plains with augmented winter rains. The decline in the winter monsoon between 3300 and 3000 years ago at the end of ENA could have played a role in the demise of the rural late Harappans during that time as the first Iron Age culture established itself on the Ghaggar-Hakra interfluve. Finally, we speculate that time-transgressive land cover changes due to aridification of the tropics may have led to a generalized instability of the global climate during ENA at the transition from the warmer Holocene thermal maximum to the cooler Neoglacial.
  • Article
    Lipid biomarker record documents hydroclimatic variability of the Mississippi River Basin during the common era
    (Wiley, 2020-05-30) Munoz, Samuel E. ; Porter, Trevor J. ; Bakkelund, Aleesha ; Nusbaumer, Jesse ; Dee, Sylvia G. ; Hamilton, Brynnydd ; Giosan, Liviu ; Tierney, Jessica E.
    Floods and droughts in the Mississippi River basin are perennial hazards that cause severe economic disruption. Here we develop and analyze a new lipid biomarker record from Horseshoe Lake (Illinois, USA) to evaluate the climatic conditions associated with hydroclimatic extremes that occurred in this region over the last 1,800 years. We present geochemical proxy evidence of temperature and moisture variability using branched glycerol dialkyl glycerol tetraethers (brGDGTs) and plant leaf wax hydrogen isotopic composition (δ2Hwax) and use isotope‐enabled coupled model simulations to diagnose the controls on these proxies. Our data show pronounced warming during the Medieval era (CE 1000–1,600) that corresponds to midcontinental megadroughts. Severe floods on the upper Mississippi River basin also occurred during the Medieval era and correspond to periods of enhanced warm‐season moisture. Our findings imply that projected increases in temperature and warm‐season precipitation could enhance both drought and flood hazards in this economically vital region.
  • Article
    Outbreak of an undetected invasive species triggered by a climate anomaly
    (John Wiley & Sons, 2016-12-28) Walsh, Jake R. ; Munoz, Samuel E. ; Vander Zanden, Jake
    When an invasive species appears at a new location, we typically have no knowledge of the population dynamics leading up to that moment. Is the establishment of invasive propagules closely followed by the appearance of the population? Or alternatively, was there an established low-density population that was released from a constraint and crossed the detection threshold? The early stages of the invasion process are a critical gap in our knowledge, yet vitally important for the detection and management of invasions. Here, we present multiple lines of evidence supporting the lag scenario for an invasive species outbreak. The invasive predatory zooplankton, spiny water flea (Bythotrephes longimanus), was detected in Lake Mendota, Wisconsin (USA), in summer of 2009 and rapidly reached and sustained exceptionally high densities. To evaluate whether Bythotrephes' outbreak immediately followed introduction or erupted from an established low-density population, we constructed a population model of Bythotrephes in Lake Mendota. In the model, Bythotrephes persisted indefinitely at low levels until favorable thermal conditions in 2009, the coolest July since at least 1895, allowed it to erupt to high densities and establish a large egg bank in the lake sediments. The egg bank stabilized the population in the high-density state despite a return to nonfavorable thermal conditions, which is further supported by demographic data suggesting a constant contribution from the egg bank during the year. The prolonged lag scenario is corroborated by the detection of two individual Bythotrephes in pre-2009 archived samples, and the detection of Bythotrephes spines in lake sediment core layers dating back to 1994 (±5 yr). Together, our results suggest that Bythotrephes persisted for at least a decade below the detection limit, until optimal thermal conditions triggered a population outbreak. This work highlights the potential for environmental conditions to trigger invasive species outbreaks from low-density populations.
  • Article
    A hydraulic modelling approach to study flood sediment deposition in floodplain lakes
    (Wiley, 2022-11-21) Reinders, Joeri B. ; Sullivan, Richard M. ; Winkler, Tyler S. ; van Hengstum, Peter J. ; Beighley, R. Edward ; Munoz, Samuel E.
    Abstract Abandoned river channels on alluvial floodplains represent areas where sediments, organic matter, and pollutants preferentially accumulate during overbank flooding. Theoretical models describing sedimentation in floodplain lakes recognize the different stages in their evolution, where the threshold for hydrological connectivity increases in older lakes as a plug-bar develops. Sedimentary archives collected from floodplain lakes are widely used to reconstruct ecological and hydrological dynamics in riverine settings, but how floodplain lake evolution influences flow velocities and sedimentation patterns on an event scale remains poorly understood. Here we combine sediment samples collected in and around a floodplain lake with hydraulic modelling simulations to examine inundation, flow velocity, and sedimentation patterns in a floodplain lake along the Trinity River at Liberty, Texas. We focus our analyses on an extreme flood event associated with the landfall of Hurricane Harvey in August 2017 and develop a series of alternative lake bathymetries to examine the influence of floodplain lake evolution on flow velocity patterns during the flood. We find that sediments deposited in the lake after the Hurricane Harvey flood become thinner and finer with distance from the tie-channel in accordance with simulated flow velocities that drop with distance from the tie-channel. Flow velocity simulations from model runs with alternative plug-bar geometries and lake depths imply that sedimentation patterns will shift as the lake evolves and infills. The integration of sediment sampling and hydraulic model simulations provides a method to understand the processes that govern sedimentation in floodplain lakes during flood events that will improve interpretations of individual events in sedimentary archives from these contexts.