Reuter Hauke

No Thumbnail Available
Last Name
Reuter
First Name
Hauke
ORCID
0000-0002-7751-9244

Search Results

Now showing 1 - 3 of 3
  • Article
    Editorial: seagrasses under times of change
    (Frontiers Media, 2022-04-28) Winters, Gidon ; Teichberg, Mirta ; Reuter, Hauke ; Viana, Ines G. ; Willette, Demian A.
    Awareness of the ecological importance of seagrasses is growing due to recent attention to their role in carbon sequestration as a potential blue carbon sink (Fourqurean et al., 2012; Bedulli et al.), as well as their role in nutrient cycling (Romero et al., 2006), sediment stabilization (James et al., 2019), pathogen filtration (Lamb et al., 2017), and the formation of essential habitats for economically important marine species (Jackson et al., 2001; Jones et al.). Despite their importance and the increasing public and scientific awareness of seagrasses, simultaneous global (e.g., ocean warming, increase in frequency and severity of extreme events, introduction and spread of invasive species) and local (e.g., physical disturbances, eutrophication, and sedimentation) anthropogenic stressors continue to be the main causes behind the ongoing global decline of seagrass meadows (Orth et al., 2006; Waycott et al., 2009).
  • Article
    Bottom-up and top-down control of seagrass overgrazing by the sea urchin Tripneustes gratilla
    (Wiley, 2023-01-19) Moreira-Saporiti, Agustín ; Hoeijmakers, Dieuwke ; Reuter, Hauke ; Msuya, Flower E. ; Gese, Katrin ; Teichberg, Mirta
    The lack of top-down control on Tripneustes gratilla, a sea urchin commonly known to graze on seagrass, and the bottom-up control of its feeding preference, led to the overgrazing of seagrass meadows of the species Thalassodendron ciliatum in Changuu Island (Zanzibar Archipelago). The impact of overgrazing on seagrasses was assessed by mapping the presence of grazed versus non-grazed seagrass patches in the study site, while the top-down control on T. gratilla was assessed by measuring the abundance of its fish predators. The feeding preference and distribution of T. gratilla were characterized by calculating the electivity indexes for each seagrass species and measuring sea urchin density, respectively. Approximately half of the patches of T. ciliatum were overgrazed, while predatory fishes of T. gratilla were absent from the site. The Vanderploeg and Scavia's Relativized Electivity Index indicated that T. gratilla had a feeding preference for T. ciliatum, which was also supported by higher urchin densities within T. ciliatum dominated patches. Bottom-up control of grazing activity was observed by quantifying and analyzing morphological, nutritional, and the chemical defense traits of the seagrass in relation to feeding preference and urchin density. Feeding was positively correlated to the seagrass tissue C:P ratio (? = 0.9), whereas urchin density showed no correlations. The bottom-up control of the feeding preference and agglomeration of T. gratilla in T. ciliatum meadows, together with the lack of evidence of substantial top-down control and the long recovery time of T. ciliatum led to the overgrazing of this species at this site. Overgrazing, therefore, was shown to be the result of multiple factors ranging from the traits of the seagrass and feeding preference of T. gratilla, to the abundance of predators in this area.
  • Article
    Climate change and the presence of invasive species will threaten the persistence of the Mediterranean seagrass community
    (Elsevier, 2023-11-18) Beca-Carretero, Pedro P. ; Winters, Gidon ; Teichberg, Mirta C. ; Procaccini, Gabriele ; Schneekloth, Fabian ; Zambrano, Ramon H. ; Chiquillo, Kelcie L. ; Reuters, Hauke
    The Mediterranean Sea has been experiencing rapid increases in temperature and salinity triggering its tropicalization. Additionally, its connection with the Red Sea has been favouring the establishment of non-native species. In this study, we investigated the effects of predicted climate change and the introduction of invasive seagrass species (Halophila stipulacea) on the native Mediterranean seagrass community (Posidonia oceanica and Cymodocea nodosa) by applying a novel ecological and spatial model with different configurations and parameter settings based on a Cellular Automata (CA). The proposed models use a discrete (stepwise) representation of space and time by executing deterministic and probabilistic rules that develop complex dynamic processes. Model applications were run under two climate scenarios (RCP 2.6 and RCP 8.5) projected from 2020 to 2100 in four different regions within the Mediterranean. Results indicate that the slow-growing P. oceanica will be highly vulnerable to climate change, suffering vast declines in its abundance. However, the results also show that western and colder areas of the Mediterranean Sea might represent refuge areas for this species. Cymodocea nodosa has been reported to exhibit resilience to predicted climate scenarios; however, it has shown habitat regression in the warmest predicted regions in the easternmost part of the basin. Our models indicate that H. stipulacea will thrive under projected climate scenarios, facilitating its spread across the basin. Also, H. stipulacea grew at the expense of C. nodosa, limiting the distribution of the latter, and eventually displacing this native species. Additionally, simulations demonstrated that areas from which P. oceanica meadows disappear would be partially covered by C. nodosa and H. stipulacea. These outcomes project that the Mediterranean seagrass community will experience a transition from long-lived, large and slow-growing species to small and fast-growing species as climate change progresses.