Yang Qinghua

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 2 of 2
  • Article
    Polar ocean observations: A critical gap in the observing system and its effect on environmental predictions from hours to a season
    (Frontiers Media, 2019-08-06) Smith, Gregory C. ; Allard, Richard ; Babin, Marcel ; Bertino, Laurent ; Chevallier, Matthieu ; Corlett, Gary ; Crout, Julia ; Davidson, Fraser J. M. ; Delille, Bruno ; Gille, Sarah T. ; Hebert, David ; Hyder, Patrick ; Intrieri, Janet ; Lagunas, José ; Larnicol, Gilles ; Kaminski, Thomas ; Kater, Belinda ; Kauker, Frank ; Marec, Claudie ; Mazloff, Matthew R. ; Metzger, E. Joseph ; Mordy, Calvin W. ; O’Carroll, Anne ; Olsen, Steffen M. ; Phelps, Michael W. ; Posey, Pamela ; Prandi, Pierre ; Rehm, Eric ; Reid, Philip C. ; Rigor, Ignatius ; Sandven, Stein ; Shupe, Matthew ; Swart, Sebastiaan ; Smedstad, Ole Martin ; Solomon, Amy ; Storto, Andrea ; Thibaut, Pierre ; Toole, John M. ; Wood, Kevin R. ; Xie, Jiping ; Yang, Qinghua ; WWRP PPP Steering Group
    There is a growing need for operational oceanographic predictions in both the Arctic and Antarctic polar regions. In the former, this is driven by a declining ice cover accompanied by an increase in maritime traffic and exploitation of marine resources. Oceanographic predictions in the Antarctic are also important, both to support Antarctic operations and also to help elucidate processes governing sea ice and ice shelf stability. However, a significant gap exists in the ocean observing system in polar regions, compared to most areas of the global ocean, hindering the reliability of ocean and sea ice forecasts. This gap can also be seen from the spread in ocean and sea ice reanalyses for polar regions which provide an estimate of their uncertainty. The reduced reliability of polar predictions may affect the quality of various applications including search and rescue, coupling with numerical weather and seasonal predictions, historical reconstructions (reanalysis), aquaculture and environmental management including environmental emergency response. Here, we outline the status of existing near-real time ocean observational efforts in polar regions, discuss gaps, and explore perspectives for the future. Specific recommendations include a renewed call for open access to data, especially real-time data, as a critical capability for improved sea ice and weather forecasting and other environmental prediction needs. Dedicated efforts are also needed to make use of additional observations made as part of the Year of Polar Prediction (YOPP; 2017–2019) to inform optimal observing system design. To provide a polar extension to the Argo network, it is recommended that a network of ice-borne sea ice and upper-ocean observing buoys be deployed and supported operationally in ice-covered areas together with autonomous profiling floats and gliders (potentially with ice detection capability) in seasonally ice covered seas. Finally, additional efforts to better measure and parameterize surface exchanges in polar regions are much needed to improve coupled environmental prediction.
  • Article
    Satellite-observed strong subtropical ocean warming as an early signature of global warming
    (Nature Research, 2023-05-24) Yang, Hu ; Lohmann, Gerrit ; Stepanek, Christian ; Wang, Qiang ; Huang, Rui Xin ; Shi, Xiaoxu ; Liu, Jiping ; Chen, Dake ; Wang, Xulong ; Zhong, Yi ; Yang, Qinghua ; Bao, Ying ; Müller, Juliane
    Satellite observations covering the last four decades reveal an ocean warming pattern resembling the negative phase of the Pacific Decadal Oscillation. This pattern has therefore been widely interpreted as a manifestation of natural climate variability. Here, we re-examine the observed warming pattern and find that the predominant warming over the subtropical oceans, while mild warming or even cooling over the subpolar ocean, is dynamically consistent with the convergence and divergence of surface water. By comparison of observations, paleo-reconstructions, and model simulations, we propose that the observed warming pattern is likely a short-term transient response to the increased CO2 forcing, which only emerges during the early stage of anthropogenic warming. On centennial to millennial timescales, the subpolar ocean warming is expected to exceed the temporally dominant warming of the subtropical ocean. This delayed but amplified subpolar ocean warming has the potential to reshape the ocean-atmosphere circulation and threaten the stability of marine-terminating ice sheets.The observed sea surface temperature pattern of strong warming concentrated in the subtropical oceans is likely to be an early signature of climate change, according to observations and model simulations, whereas ocean warming at high latitudes is expected to become dominant in the future.