Fisher Andrew T.

No Thumbnail Available
Last Name
Fisher
First Name
Andrew T.
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    In situ enrichment of ocean crust microbes on igneous minerals and glasses using an osmotic flow-through device
    (American Geophysical Union, 2011-06-21) Smith, Amy ; Popa, Radu ; Fisk, Martin ; Nielsen, Mark ; Wheat, C. Geoffrey ; Jannasch, Hans W. ; Fisher, Andrew T. ; Becker, Keir ; Sievert, Stefan M. ; Flores, Gilberto
    The Integrated Ocean Drilling Program (IODP) Hole 1301A on the eastern flank of Juan de Fuca Ridge was used in the first long-term deployment of microbial enrichment flow cells using osmotically driven pumps in a subseafloor borehole. Three novel osmotically driven colonization systems with unidirectional flow were deployed in the borehole and incubated for 4 years to determine the microbial colonization preferences for 12 minerals and glasses present in igneous rocks. Following recovery of the colonization systems, we measured cell density on the minerals and glasses by fluorescent staining and direct counting and found some significant differences between mineral samples. We also determined the abundance of mesophilic and thermophilic culturable organotrophs grown on marine R2A medium and identified isolates by partial 16S or 18S rDNA sequencing. We found that nine distinct phylotypes of culturable mesophilic oligotrophs were present on the minerals and glasses and that eight of the nine can reduce nitrate and oxidize iron. Fe(II)-rich olivine minerals had the highest density of total countable cells and culturable organotrophic mesophiles, as well as the only culturable organotrophic thermophiles. These results suggest that olivine (a common igneous mineral) in seawater-recharged ocean crust is capable of supporting microbial communities, that iron oxidation and nitrate reduction may be important physiological characteristics of ocean crust microbes, and that heterogeneously distributed minerals in marine igneous rocks likely influence the distribution of microbial communities in the ocean crust.
  • Article
    Models of hydrothermal circulation within 106 Ma seafloor : constraints on the vigor of fluid circulation and crustal properties, below the Madeira Abyssal Plain
    (American Geophysical Union, 2005-11-04) Fisher, Andrew T. ; von Herzen, Richard P.
    Heat flow measurements colocated with seismic data across 106 Ma seafloor of the Madeira Abyssal Plain (MAP) reveal variations in seafloor heat flow of ±10–20% that are positively correlated with basement relief buried below thick sediments. Conductive finite element models of sediments and upper basement using reasonable thermal properties are capable of generating the observed positive correlation between basement relief and seafloor heat flow, but with variability of just ±4–8%. Conductive simulations using a high Nusselt number (Nu) proxy for vigorous local convection suggest that Nu = 2–10 within the upper 600–100 m of basement, respectively, is sufficient to achieve a reasonable match to observations. These Nu values are much lower than those inferred on younger ridge flanks where greater thermal homogeneity is achieved in upper basement. Fully coupled simulations suggest that permeability below the MAP is on the order of 10−12–10−10 m2 within the upper 300–600 m of basement. This permeability range is broadly consistent with values determined by single-hole experiments and from modeling studies at other (mostly younger) sites. We infer that the reduction in basement permeability with age that is thought to occur within younger seafloor may slow considerably within older seafloor, helping hydrothermal convection to continue as plates age.
  • Article
    Ocean system science to inform the exploration of ocean worlds
    (Oceanography Society, 2022-05-23) German, Christopher R. ; Blackman, Donna K. ; Fisher, Andrew T. ; Girguis, Peter R. ; Hand, Kevin P. ; Hoehler, Tori M. ; Huber, Julie A. ; Marshall, John C. ; Pietro, Kathryn R. ; Seewald, Jeffrey S. ; Shock, Everett ; Sotin, Christophe ; Thurnherr, Andreas M. ; Toner, Brandy M.
    Ocean worlds provide fascinating opportunities for future ocean research. They allow us to test our understanding of processes we consider fundamental to Earth’s ocean and simultaneously provide motivation to explore our ocean further and develop new technologies to do so. In parallel, ocean worlds research offers opportunities for ocean scientists to provide meaningful contributions to novel investigations in the coming decades that will search for life beyond Earth. Key to the contributions that oceanographers can make to this field is that studies of all other ocean worlds remain extremely data limited. Here, we describe an approach based on ocean systems science in which theoretical modeling can be used, in concert with targeted laboratory experimentation and direct observations in Earth’s ocean, to predict what processes (including those essential to support life) might be occurring on other ocean worlds. In turn, such an approach would help identify new technologies that might be required for future space missions as well as appropriate analog studies that could be conducted on Earth to develop and validate such technologies. Our approach is both integrative and interdisciplinary and considers multiple domains, from processes active in the subseafloor to those associated with ocean-ice feedbacks.
  • Article
    COBRA Master Class: Providing deep-sea expedition leadership training to accelerate early career advancement
    (Frontiers Media, 2023-10-05) Rotjan, Randi D. ; Bell, Katherine L. C. ; Huber, Julie A. ; Wheat, Charles Geoffrey ; Fisher, Andrew T. ; Sylvan, Rosalynn Lee ; McManus, James ; Bigham, Katharine T. ; Cambronero-Solano, Sergio ; Cordier, Tristan ; Goode, Savannah ; Leonard, Juliana ; Murdock, Sheryl ; Paula, Fabiana S. ; Ponsoni, Leandro ; Roa-Varon, Adela ; Seabrook, Sarah ; Shomberg, Russell ; Van Audenhaege, Loic ; Orcutt, Beth N.
    Leading deep-sea research expeditions requires a breadth of training and experience, and the opportunities for Early Career Researchers (ECRs) to obtain focused mentorship on expedition leadership are scarce. To address the need for leadership training in deep-sea expeditionary science, the Crustal Ocean Biosphere Research Accelerator (COBRA) launched a 14-week virtual Master Class with both synchronous and asynchronous components to empower students with the skills and tools to successfully design, propose, and execute deep-sea oceanographic field research. The Master Class offered customized and distributed training approaches and created an open-access syllabus with resources, including reading material, lectures, and on-line resources freely-available on the Master Class website (cobra.pubpub.org). All students were Early Career Researchers (ECRs, defined here as advanced graduate students, postdoctoral scientists, early career faculty, or individuals with substantial industry, government, or NGO experience) and designated throughout as COBRA Fellows. Fellows engaged in topics related to choosing the appropriate deep-sea research asset for their Capstone “dream cruise” project, learning about funding sources and how to tailor proposals to meet those source requirements, and working through an essential checklist of pre-expedition planning and operations. The Master Class covered leading an expedition at sea, at-sea operations, and ship-board etiquette, and the strengths and challenges of telepresence. It also included post-expedition training on data management strategies and report preparation and outputs. Throughout the Master Class, Fellows also discussed education and outreach, international ocean law and policy, and the importance and challenges of team science. Fellows further learned about how to develop concepts respectfully with regard to geographic and cultural considerations of their intended study sites. An assessment of initial outcomes from the first iteration of the COBRA Master Class reinforces the need for such training and shows great promise with one-quarter of the Fellows having submitted a research proposal to national funding agencies within six months of the end of the class. As deep-sea research continues to accelerate in scope and speed, providing equitable access to expedition training is a top priority to enable the next generation of deep-sea science leadership.