Ortiz Alejandra C.

No Thumbnail Available
Last Name
First Name
Alejandra C.

Search Results

Now showing 1 - 3 of 3
  • Thesis
    Investigating the evolution and formation of coastlines and the response to sea-level rise
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2015-09) Ortiz, Alejandra C.
    To understand how waves and sea level shape sandy shoreline profiles, I use existing energetics-based equations of cross-shore sediment flux to describe shoreface evolution and equilibrium profiles, utilizing linear Airy wave theory instead of shallow-water wave assumptions. By calculating a depth-dependent characteristic diffusivity timescale, I develop a morphodynamic depth of shoreface closure for a given time envelope, with depth increasing as temporal scale increases. To assess which wave events are most important in shaping the shoreface in terms of occurrence and severity, I calculate the characteristic effective wave conditions for both cross-shore and alongshore shoreline evolution. Extreme events are formative in the cross-shore shoreface evolution, while alongshore shoreline evolution scales linearly with the mean wave climate. Bimodal distributions of weighted wave heights are indicative of a site impacted more frequently by tropical storms rather than extra-tropical storms. To understand how offshore wave climate and underlying geometry of a carbonate reef platform shapes evolution of atolls, I simulate the hydrodynamics of a simplified reef flat, using XBeach, a two-dimensional model of infragravity wave propagation. The reef flat self-organizes to a specific width and water depth depending on the offshore wave climate and characteristics of the available sediment. Formation of a sub-aerial landmass, like a motu, can be initiated by a change in offshore wave climate (like a storm), which can create a nucleation site from mobilization and deposition of coarse sediment on the reef flat. Once a motu is present, the shoreline should prograde until reaching a critical reef-flat width. Our conceptual model of reef-flat evolution and motu formation is governed by understanding the hydrodynamics of the system and subsequent response of sediment transport.
  • Article
    Mean and turbulent velocity fields near rigid and flexible plants and the implications for deposition
    (John Wiley & Sons, 2013-12-24) Ortiz, Alejandra C. ; Ashton, Andrew D. ; Nepf, Heidi M.
    The transport of fine sediment and organic matter plays an important role in the nutrient dynamics of shallow aquatic systems, and the fate of these particles is closely linked to vegetation. We describe the mean and turbulent flow near circular patches of synthetic vegetation and examine how the spatial distribution of flow is connected to the spatial distribution of suspended sediment deposition. Patches of rigid, emergent, and flexible, submerged vegetation were considered, with two different stem densities. For the rigid emergent vegetation, flow adjustment was primarily two-dimensional, with flow deflected in the horizontal plane. Horizontal shear layers produced a von Kármán vortex street. Flow through the patch shifted the vortex street downstream, resulting in a region directly downstream of the patch in which both the mean and turbulent velocities were diminished. Net deposition was enhanced within this region. In contrast, for the flexible, submerged vegetation, flow adjustment was three-dimensional, with shear layers formed in the vertical and horizontal planes. Because of strong vertical circulation, turbulent kinetic energy was elevated directly downstream of the patch. Consistent with this, deposition was not enhanced at any point in the wake. This comparison suggests that morphological feedbacks differ between submerged and emergent vegetation. Further, enhanced deposition occurred only in regions where both turbulent and mean velocities were reduced, relative to the open channel. Reduced deposition (indicating enhanced resuspension) occurred in regions of high turbulence kinetic energy, regardless of local mean velocity. These observations highlight the importance of turbulence in controlling deposition.
  • Thesis
    Investigation of the effect of a circular patch of vegetation on turbulence generation and sediment deposition using four case studies
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2012-06) Ortiz, Alejandra C.
    This study describes the spatial distribution of sediment deposition in the wake of a circular patch of model vegetation and the effect of the patch on turbulence and mean flow. Two difference types pf vegetation were used along with two different stem densities totaling four different case studies. The spatial location of enhanced deposition correlated with the steady wake zone, which has length, L1. The steady wake zone only occurred downstream of the rigid emergent patches of vegetation and was not seen downstream of the flexible submerged patches of vegetation. The enhanced deposition occurred when both turbulence and mean velocity was below the upstream, initial values. The enhanced deposition occurred when the mean velocity was less than or equal to half of the initial velocity. For the four cases studied, theses parameters of low velocity and low turbulence were primarily met within the steady wake region immediately downstram of the two rigid emergent patches of vegetation. In all four cases, large coherent structures are created in the flow due to the patch. Lateral vortices are formed downstream of the patch in a von-Karman vortex street that meets at the center of the flow a distance, Lw, downstream of the patch. For the flexible submerged cases, streamlines reattach to the bed of the flume a distance, Lv, downstream of the patch. In addition, for the flexible submerged cases, a secondary circulation is generated with flow moving laterally away from the patch at the surface and toward the centerline of the patch at the bed.