Clement-Kinney Jaclyn L.

No Thumbnail Available
Last Name
Clement-Kinney
First Name
Jaclyn L.
ORCID

Search Results

Now showing 1 - 2 of 2
Thumbnail Image
Article

Intrusion of warm Bering/Chukchi waters onto the shelf in the western Beaufort Sea

2009-06-27 , Okkonen, Stephen R. , Ashjian, Carin J. , Campbell, Robert G. , Maslowski, Wieslaw , Clement-Kinney, Jaclyn L. , Potter, Rachel

Wind-driven changes in the path of warm Bering/Chukchi waters carried by the Alaska Coastal Current (ACC) through Barrow Canyon during late summer are described from high-resolution hydrography, acoustic Doppler current profiler–measured currents, and satellite-measured sea surface temperature imagery acquired from mid-August to mid-September 2005–2007 near Barrow, Alaska. Numerical simulations are used to provide a multidecadal context for these observational data. Four generalized wind regimes and associated circulation states are identified. When winds are from the east or east-southeast, the ACC jet tends to be relatively strong and flows adjacent to the shelf break along the southern flank of Barrow Canyon. These easterly winds drive inner shelf currents northwestward along the Alaskan Beaufort coast where they oppose significant eastward intrusions of warm water from Barrow Canyon onto the shelf. Because these easterly winds promote sea level set down over the Beaufort shelf and upwelling along the Beaufort slope, the ACC jet necessarily becomes weaker, broader, and displaced seaward from the Beaufort shelf break upon exiting Barrow Canyon. Winds from the northeast promote separation of the ACC from the southern flank of Barrow Canyon and establish an up-canyon current along the southern flank that is fed in part by waters from the western Beaufort shelf. When winds are weak or from the southwest, warm Bering/Chukchi waters from Barrow Canyon intrude onto the western Beaufort shelf.

Thumbnail Image
Article

Ecological characteristics of core-use areas used by Bering–Chukchi–Beaufort (BCB) bowhead whales, 2006–2012

2015-09-10 , Citta, John J. , Quakenbush, Lori T. , Okkonen, Stephen R. , Druckenmiller, Matthew L. , Maslowski, Wieslaw , Clement-Kinney, Jaclyn L. , George, John C. , Brower, Harry , Small, Robert J. , Ashjian, Carin J. , Harwood, Lois A. , Heide-Jørgensen, Mads Peter

The Bering–Chukchi–Beaufort (BCB) population of bowhead whales (Balaena mysticetus) ranges across the seasonally ice-covered waters of the Bering, Chukchi, and Beaufort seas. We used locations from 54 bowhead whales, obtained by satellite telemetry between 2006 and 2012, to define areas of concentrated use, termed “core-use areas”. We identified six primary core-use areas and describe the timing of use and physical characteristics (oceanography, sea ice, and winds) associated with these areas. In spring, most whales migrated from wintering grounds in the Bering Sea to the Cape Bathurst polynya, Canada (Area 1), and spent the most time in the vicinity of the halocline at depths <75 m, which are within the euphotic zone, where calanoid copepods ascend following winter diapause. Peak use of the polynya occurred between 7 May and 5 July; whales generally left in July, when copepods are expected to descend to deeper depths. Between 12 July and 25 September, most tagged whales were located in shallow shelf waters adjacent to the Tuktoyaktuk Peninsula, Canada (Area 2), where wind-driven upwelling promotes the concentration of calanoid copepods. Between 22 August and 2 November, whales also congregated near Point Barrow, Alaska (Area 3), where east winds promote upwelling that moves zooplankton onto the Beaufort shelf, and subsequent relaxation of these winds promoted zooplankton aggregations. Between 27 October and 8 January, whales congregated along the northern shore of Chukotka, Russia (Area 4), where zooplankton likely concentrated along a coastal front between the southeastward-flowing Siberian Coastal Current and northward-flowing Bering Sea waters. The two remaining core-use areas occurred in the Bering Sea: Anadyr Strait (Area 5), where peak use occurred between 29 November and 20 April, and the Gulf of Anadyr (Area 6), where peak use occurred between 4 December and 1 April; both areas exhibited highly fractured sea ice. Whales near the Gulf of Anadyr spent almost half of their time at depths between 75 and 100 m, usually near the seafloor, where a subsurface front between cold Anadyr Water and warmer Bering Shelf Water presumably aggregates zooplankton. The amount of time whales spent near the seafloor in the Gulf of Anadyr, where copepods (in diapause) and, possibly, euphausiids are expected to aggregate provides strong evidence that bowhead whales are feeding in winter. The timing of bowhead spring migration corresponds with when zooplankton are expected to begin their spring ascent in April. The core-use areas we identified are also generally known from other studies to have high densities of whales and we are confident these areas represent the majority of important feeding areas during the study (2006–2012). Other feeding areas, that we did not detect, likely existed during the study and we expect core-use area boundaries to shift in response to changing hydrographic conditions.