Chang Yuan-Pin

No Thumbnail Available
Last Name
Chang
First Name
Yuan-Pin
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Dynamic millennial-scale climate changes in the northwestern Pacific over the past 40,000 years
    (American Geophysical Union, 2010-12-03) Chen, Min-Te ; Lin, Xiaopei ; Chang, Yuan-Pin ; Chen, Y.-C. ; Lo, L. ; Shen, Chuan-Chou ; Yokoyama, Yusuke ; Oppo, Delia W. ; Thompson, William G. ; Zhang, Rong
    Ice core records of polar temperatures and greenhouse gases document abrupt millennial-scale oscillations that suggest the reduction or shutdown of thermohaline Circulation (THC) in the North Atlantic Ocean may induce the abrupt cooling in the northern hemisphere. It remains unknown, however, whether the sea surface temperature (SST) is cooling or warming in the Kuroshio of the Northwestern Pacific during the cooling event. Here we present an AMS 14C-dated foraminiferal Mg/Ca SST record from the central Okinawa Trough and document that the SST variations exhibit two steps of warming since 21 ka — at 14.7 ka and 12.8 ka, and a cooling (∼1.5°C) during the interval of the Younger Dryas. By contrast, we observed no SST change or oceanic warming (∼1.5–2°C) during the episodes of Northern Hemisphere cooling between ∼21–40 ka. We therefore suggest that the “Antarctic-like” timing and amplitude of millennial-scale SST variations in the subtropical Northwestern Pacific between 20–40 ka may have been determined by rapid ocean adjustment processes in response to abrupt wind stress and meridional temperature gradient changes in the North Pacific.
  • Article
    Monsoon hydrography and productivity changes in the East China Sea during the past 100,000 years : Okinawa Trough evidence (MD012404)
    (American Geophysical Union, 2009-08-29) Chang, Yuan-Pin ; Chen, Min-Te ; Yokoyama, Yusuke ; Matsuzaki, Hiroyuki ; Thompson, William G. ; Kao, Shuh-Ji ; Kawahata, Hodaka
    We analyzed the high-resolution foraminifer isotope records, total organic carbon (TOC), and opal content from an Okinawa Trough core MD012404 in order to estimate the monsoon hydrography and productivity changes in the East China Sea (ECS) of the tropical western Pacific over the past 100,000 years. The variability shown in the records on orbital time scales indicates that high TOC intervals coincide with the increases of boreal May–September insolation driven by precession cycles (∼21 ka), implying a strong connection to the variations in monsoons. We also observed possibly nearly synchronous, millennial-scale changes of the ECS surface hydrography (mainly driven by salinity changes but also by temperature effects) and productivity coincident with monsoon events in the Hulu/Dongge stalagmite isotope records. We found that increased freshening and high productivity correlate with high monsoon intensity in interstadials. This study suggests that the millennial-scale changes in monsoon hydrography and productivity in the ECS are remarkable and persistent features over the past 100,000 years.