Tepolt Carolyn K.

No Thumbnail Available
Last Name
First Name
Carolyn K.

Search Results

Now showing 1 - 6 of 6
  • Article
    Current research, pressing issues, and lingering questions in marine invasion science: lessons from the Tenth International Conference on Marine Bioinvasions (ICMB-X)
    (Regional Euro-Asian Biological Invasions Centre, 2020-03-21) Fowler, Amy E. ; Blakeslee, April M. H. ; Bortolus, Alejandro ; Dias, P. Joana ; Tepolt, Carolyn K. ; Schwindt, Evangelina
    Research on marine bioinvasions is an inherently international collaboration. Species range boundaries have become more fluid in recent decades as a result of enhanced human globalization, leading to species translocations across international boundaries through high profile vectors (e.g., shipping, hull fouling, aquaculture, etc.) (Ruiz et al. 2000; Seebens et al. 2013). Global trade and anthropogenic activities that promote invasive species spread continue to increase, rising by an average of 70% since 1970, with no sign of saturation (Pagad et al. 2015; Seebens et al. 2017). Even though these numbers are primarily based on terrestrial systems, recent work has demonstrated that marine ecosystems are as severely impacted by invasive species as by other human activities including overfishing, pollution (including plastics), climate change, and ocean acidification (Diaz et al. 2019). Species introductions to seas, coasts, and estuaries are therefore a global threat to human and non-human populations alike. As such, scientists and managers are increasingly focused on prevention and management, risk analysis and prioritization, and innovative technologies to detect novel species.
  • Article
    Recent introductions reveal differential susceptibility to parasitism across an evolutionary mosaic
    (Wiley Open Access, 2019-09-04) Tepolt, Carolyn K. ; Darling, John A. ; Blakeslee, April M. H. ; Fowler, Amy E. ; Torchin, Mark ; Miller, A. Whitman ; Ruiz, Gregory
    Parasitism can represent a potent agent of selection, and introduced parasites have the potential to substantially alter their new hosts' ecology and evolution. While significant impacts have been reported for parasites that switch to new host species, the effects of macroparasite introduction into naïve populations of host species with which they have evolved remain poorly understood. Here, we investigate how the estuarine white‐fingered mud crab (Rhithropanopeus harrisii ) has adapted to parasitism by an introduced rhizocephalan parasite (Loxothylacus panopaei ) that castrates its host. While the host crab is native to much of the East and Gulf Coasts of North America, its parasite is native only to the southern end of this range. Fifty years ago, the parasite invaded the mid‐Atlantic, gradually expanding through previously naïve host populations. Thus, different populations of the same host species have experienced different degrees of historical interaction (and thus potential evolutionary response time) with the parasite: long term, short term, and naïve. In nine estuaries across this range, we examined whether and how parasite prevalence and host susceptibility to parasitism differs depending on the length of the host's history with the parasite. In field surveys, we found that the parasite was significantly more prevalent in its introduced range (i.e., short‐term interaction) than in its native range (long‐term interaction), a result that was also supported by a meta‐analysis of prevalence data covering the 50 years since its introduction. In controlled laboratory experiments, host susceptibility to parasitism was significantly higher in naïve hosts than in hosts from the parasite's native range, suggesting that host resistance to parasitism is under selection. These results suggest that differences in host–parasite historical interaction can alter the consequences of parasite introductions in host populations. As anthropogenically driven range shifts continue, disruptions of host–parasite evolutionary relationships may become an increasingly important driver of ecological and evolutionary change.
  • Article
    Rapid adaptation to temperature via a potential genomic island of divergence in the invasive green crab, Carcinus maenas
    (Frontiers Media, 2020-11-26) Tepolt, Carolyn K. ; Palumbi, Stephen R.
    Widespread species often adapt easily to novel conditions – both those found in new habitats and those generated by climate change. However, rapid adaptation may be hindered in the marine realm, where long-distance dispersal and consequently high gene flow are predicted to limit potential for local adaptation. Here, we use a highly dispersive invasive marine crab to test the nature and speed of adaptation to temperature in the sea. Using single nucleotide polymorphisms (SNPs) generated from cardiac transcriptome sequencing, we characterized six populations of the European green crab (Carcinus maenas) located across parallel thermal gradients in their native and invasive ranges. We compared SNP frequencies with local temperatures and previously generated data on cardiac heat and cold tolerance to identify candidate markers associated with population-level differences in thermal physiology. Of 10,790 SNPs, 104 were identified as frequency outliers, a signal that was strongly driven by association with temperature and/or cold tolerance. Seventy-two of these outlier markers, representing 28 different genes, were in a cluster of SNPs identified as a potential inversion polymorphism using linkage disequilibrium network analysis. This SNP cluster was unique in the data set, which was otherwise characterized by low levels of linkage disequilibrium, and markers in this cluster showed a significant enrichment of coding substitutions relative to the full SNP set. These 72 outlier SNPs appear to be transmitted as a unit, and represent a putative genomic island of divergence which varied in frequency with organismal cold tolerance. This relationship was strikingly similar across both native and invasive populations, all of which showed a very strong correlation with cold tolerance (R2 = 0.96 over all six populations). Notably, three of these populations have diverged recently (<100 years) and show little to no neutral divergence, suggesting that this genomic region may be responding to temperature on a relatively short time scale. This relationship indicates adaptation to temperature based on the action of a putative genomic island of divergence, perhaps partially explaining the extraordinary invasive ability of this species.
  • Article
    An evolutionary perspective on marine invasions
    (Wiley, 2019-12-16) Blakeslee, April M. H. ; Manousaki, Tereza ; Vasileiadou, Katerina ; Tepolt, Carolyn K.
    Species distributions are rapidly changing as human globalization increasingly moves organisms to novel environments. In marine systems, species introductions are the result of a number of anthropogenic mechanisms, notably shipping, aquaculture/mariculture, the pet and bait trades, and the creation of canals. Marine invasions are a global threat to human and non‐human populations alike and are often listed as one of the top conservation concerns worldwide, having ecological, evolutionary, and social ramifications. Evolutionary investigations of marine invasions can provide crucial insight into an introduced species’ potential impacts in its new range, including: physiological adaptation and behavioral changes to exploit new environments; changes in resident populations, community interactions, and ecosystems; and severe reductions in genetic diversity that may limit evolutionary potential in the introduced range. This special issue focuses on current research advances in the evolutionary biology of marine invasions and can be broadly classified into a few major avenues of research: the evolutionary history of invasive populations, post‐invasion reproductive changes, and the role of evolution in parasite introductions. Together, they demonstrate the value of investigating marine invasions from an evolutionary perspective, with benefits to both fundamental and applied evolutionary biology at local and broad scales.
  • Article
    Mitochondrial genotype influences the response to cold stress in the European green crab Carcinus maenas
    (Company of Biologists, 2019-07-08) Coyle, Aidan F. ; Voss, Erin R. ; Tepolt, Carolyn K. ; Carlon, David B.
    Hybrid zones provide natural experiments in recombination within and between genomes that may have strong effects on organismal fitness. On the East Coast of North America, two distinct lineages of the European green crab (Carcinus maenas) have been introduced in the last two centuries. These two lineages with putatively different adaptive properties have hybridized along the coast of the eastern Gulf of Maine, producing new nuclear and mitochondrial combinations that show clinal variation correlated with water temperature. To test the hypothesis that mitochondrial or nuclear genes have effects on thermal tolerance, we first measured the response to cold stress in crabs collected throughout the hybrid zone, then sequenced the mitochondrial CO1 gene and two nuclear single nucleotide polymorphisms (SNPs) representative of nuclear genetic lineage. Mitochondrial haplotype had a strong association with the ability of crabs to right themselves at 4.5°C that was sex specific: haplotypes originally from northern Europe gave male crabs an advantage while there was no haplotype effect on righting in female crabs. By contrast, the two nuclear SNPs that were significant outliers in a comparison between northern and southern C. maenas populations had no effect on righting response at low temperature. These results add C. maenas to the shortlist of ectotherms in which mitochondrial variation has been shown to affect thermal tolerance, and suggest that natural selection is shaping the structure of the hybrid zone across the Gulf of Maine. Our limited genomic sampling does not eliminate the strong possibility that mito-nuclear co-adaptation may play a role in the differences in thermal phenotypes documented here. Linkage between mitochondrial genotype and thermal tolerance suggests a role for local adaptation in promoting the spread of invasive populations of C. maenas around the world.
  • Publication
    Effects of season and latitude on the diet quality of the invasive Asian shore crab Hemigrapsus sanguineus
    (Inter Research, 2023-01-26) Reese, Tanner C. ; Alder, Jill ; Asay, Emily Gail ; Blakeslee, April M. H. ; Cabrera, Doreen ; Crane, Laura C. ; Fletcher, Laura S. ; Pinkston, Emily ; Repetto, Michele F. ; Smith, Nanette ; Stancil, Carter ; Tepolt, Carolyn K. ; Toscano, Benjamin J. ; Griffen, Blaine D.
    Invasive species alter invaded ecosystems via direct impacts such as consumption. In turn, an invasive species’ ability to thrive in new habitats depends on its ability to exploit available resources, which may change over time and space. Diet quality and quantity are indicators of a consumer’s consumptive effects and can be strongly influenced by season and latitude. We examined the effects of season and latitude on the diet quality and quantity of the invasive Asian shore crab Hemigrapsus sanguineus throughout a non-winter sampling year at 5 different sites spanning 8° of latitude across its invaded United States range. We found that diet quality, averaged through time, largely follows an expected latitudinal cline, being higher in the center of its range and lower toward the southern and northern edges. We also found that while some sites show similar patterns of diet quality variation with season, no pattern is consistent across all latitudes. Finally, we found that crabs at sites with low diet quality during summer reproductive months did not compensate by increasing total consumption. Because the Asian shore crab is an important consumer in its invaded ecosystems, understanding how its diet quality and quantity vary with season and latitude can help us better understand how this species influences trophic interactions and community structure, how it has been able to establish across a wide ecological and environmental range, and where future range expansion is most likely to occur.