Tepolt
Carolyn K.
Tepolt
Carolyn K.
No Thumbnail Available
Search Results
Now showing
1 - 4 of 4
-
ArticleCurrent research, pressing issues, and lingering questions in marine invasion science: lessons from the Tenth International Conference on Marine Bioinvasions (ICMB-X)(Regional Euro-Asian Biological Invasions Centre, 2020-03-21) Fowler, Amy E. ; Blakeslee, April M. H. ; Bortolus, Alejandro ; Dias, P. Joana ; Tepolt, Carolyn K. ; Schwindt, EvangelinaResearch on marine bioinvasions is an inherently international collaboration. Species range boundaries have become more fluid in recent decades as a result of enhanced human globalization, leading to species translocations across international boundaries through high profile vectors (e.g., shipping, hull fouling, aquaculture, etc.) (Ruiz et al. 2000; Seebens et al. 2013). Global trade and anthropogenic activities that promote invasive species spread continue to increase, rising by an average of 70% since 1970, with no sign of saturation (Pagad et al. 2015; Seebens et al. 2017). Even though these numbers are primarily based on terrestrial systems, recent work has demonstrated that marine ecosystems are as severely impacted by invasive species as by other human activities including overfishing, pollution (including plastics), climate change, and ocean acidification (Diaz et al. 2019). Species introductions to seas, coasts, and estuaries are therefore a global threat to human and non-human populations alike. As such, scientists and managers are increasingly focused on prevention and management, risk analysis and prioritization, and innovative technologies to detect novel species.
-
ArticleRecent introductions reveal differential susceptibility to parasitism across an evolutionary mosaic(Wiley Open Access, 2019-09-04) Tepolt, Carolyn K. ; Darling, John A. ; Blakeslee, April M. H. ; Fowler, Amy E. ; Torchin, Mark ; Miller, A. Whitman ; Ruiz, GregoryParasitism can represent a potent agent of selection, and introduced parasites have the potential to substantially alter their new hosts' ecology and evolution. While significant impacts have been reported for parasites that switch to new host species, the effects of macroparasite introduction into naïve populations of host species with which they have evolved remain poorly understood. Here, we investigate how the estuarine white‐fingered mud crab (Rhithropanopeus harrisii ) has adapted to parasitism by an introduced rhizocephalan parasite (Loxothylacus panopaei ) that castrates its host. While the host crab is native to much of the East and Gulf Coasts of North America, its parasite is native only to the southern end of this range. Fifty years ago, the parasite invaded the mid‐Atlantic, gradually expanding through previously naïve host populations. Thus, different populations of the same host species have experienced different degrees of historical interaction (and thus potential evolutionary response time) with the parasite: long term, short term, and naïve. In nine estuaries across this range, we examined whether and how parasite prevalence and host susceptibility to parasitism differs depending on the length of the host's history with the parasite. In field surveys, we found that the parasite was significantly more prevalent in its introduced range (i.e., short‐term interaction) than in its native range (long‐term interaction), a result that was also supported by a meta‐analysis of prevalence data covering the 50 years since its introduction. In controlled laboratory experiments, host susceptibility to parasitism was significantly higher in naïve hosts than in hosts from the parasite's native range, suggesting that host resistance to parasitism is under selection. These results suggest that differences in host–parasite historical interaction can alter the consequences of parasite introductions in host populations. As anthropogenically driven range shifts continue, disruptions of host–parasite evolutionary relationships may become an increasingly important driver of ecological and evolutionary change.
-
ArticleAn evolutionary perspective on marine invasions(Wiley, 2019-12-16) Blakeslee, April M. H. ; Manousaki, Tereza ; Vasileiadou, Katerina ; Tepolt, Carolyn K.Species distributions are rapidly changing as human globalization increasingly moves organisms to novel environments. In marine systems, species introductions are the result of a number of anthropogenic mechanisms, notably shipping, aquaculture/mariculture, the pet and bait trades, and the creation of canals. Marine invasions are a global threat to human and non‐human populations alike and are often listed as one of the top conservation concerns worldwide, having ecological, evolutionary, and social ramifications. Evolutionary investigations of marine invasions can provide crucial insight into an introduced species’ potential impacts in its new range, including: physiological adaptation and behavioral changes to exploit new environments; changes in resident populations, community interactions, and ecosystems; and severe reductions in genetic diversity that may limit evolutionary potential in the introduced range. This special issue focuses on current research advances in the evolutionary biology of marine invasions and can be broadly classified into a few major avenues of research: the evolutionary history of invasive populations, post‐invasion reproductive changes, and the role of evolution in parasite introductions. Together, they demonstrate the value of investigating marine invasions from an evolutionary perspective, with benefits to both fundamental and applied evolutionary biology at local and broad scales.
-
PublicationEffects of season and latitude on the diet quality of the invasive Asian shore crab Hemigrapsus sanguineus(Inter Research, 2023-01-26) Reese, Tanner C. ; Alder, Jill ; Asay, Emily Gail ; Blakeslee, April M. H. ; Cabrera, Doreen ; Crane, Laura C. ; Fletcher, Laura S. ; Pinkston, Emily ; Repetto, Michele F. ; Smith, Nanette ; Stancil, Carter ; Tepolt, Carolyn K. ; Toscano, Benjamin J. ; Griffen, Blaine D.Invasive species alter invaded ecosystems via direct impacts such as consumption. In turn, an invasive species’ ability to thrive in new habitats depends on its ability to exploit available resources, which may change over time and space. Diet quality and quantity are indicators of a consumer’s consumptive effects and can be strongly influenced by season and latitude. We examined the effects of season and latitude on the diet quality and quantity of the invasive Asian shore crab Hemigrapsus sanguineus throughout a non-winter sampling year at 5 different sites spanning 8° of latitude across its invaded United States range. We found that diet quality, averaged through time, largely follows an expected latitudinal cline, being higher in the center of its range and lower toward the southern and northern edges. We also found that while some sites show similar patterns of diet quality variation with season, no pattern is consistent across all latitudes. Finally, we found that crabs at sites with low diet quality during summer reproductive months did not compensate by increasing total consumption. Because the Asian shore crab is an important consumer in its invaded ecosystems, understanding how its diet quality and quantity vary with season and latitude can help us better understand how this species influences trophic interactions and community structure, how it has been able to establish across a wide ecological and environmental range, and where future range expansion is most likely to occur.