Baker Maria C.

No Thumbnail Available
Last Name
First Name
Maria C.

Search Results

Now showing 1 - 4 of 4
  • Article
    A blueprint for an inclusive, global deep-sea ocean decade field program
    (Frontiers Media, 2020-11-25) Howell, Kerry L. ; Hilario, Ana ; Allcock, A. Louise ; Bailey, David ; Baker, Maria C. ; Clark, Malcolm R. ; Colaço, Ana ; Copley, Jonathan T. ; Cordes, Erik E. ; Danovaro, Roberto ; Dissanayake, Awantha ; Escobar Briones, Elva ; Esquete, Patricia ; Gallagher, Austin J. ; Gates, Andrew R. ; Gaudron, Sylvie M. ; German, Christopher R. ; Gjerde, Kristina M. ; Higgs, Nicholas D. ; Le Bris, Nadine ; Levin, Lisa A ; Manea, Elisabetta ; McClain, Craig ; Menot, Lenaick ; Mestre, Mireia ; Metaxas, Anna ; Milligan, Rosanna J. ; Muthumbi, Agnes W. N. ; Narayanaswamy, Bhavani E. ; Ramalho, Sofia P. ; Ramirez-Llodra, Eva ; Robson, Laura M. ; Rogers, Alex D. ; Sellanes, Javier ; Sigwart, Julia D. ; Sink, Kerry ; Snelgrove, Paul V. R. ; Stefanoudis, Paris V. ; Sumida, Paulo Y. ; Taylor, Michelle L. ; Thurber, Andrew R. ; Vieira, Rui P. ; Watanabe, Hiromi K. ; Woodall, Lucy C. ; Xavier, Joana R.
    The ocean plays a crucial role in the functioning of the Earth System and in the provision of vital goods and services. The United Nations (UN) declared 2021–2030 as the UN Decade of Ocean Science for Sustainable Development. The Roadmap for the Ocean Decade aims to achieve six critical societal outcomes (SOs) by 2030, through the pursuit of four objectives (Os). It specifically recognizes the scarcity of biological data for deep-sea biomes, and challenges the global scientific community to conduct research to advance understanding of deep-sea ecosystems to inform sustainable management. In this paper, we map four key scientific questions identified by the academic community to the Ocean Decade SOs: (i) What is the diversity of life in the deep ocean? (ii) How are populations and habitats connected? (iii) What is the role of living organisms in ecosystem function and service provision? and (iv) How do species, communities, and ecosystems respond to disturbance? We then consider the design of a global-scale program to address these questions by reviewing key drivers of ecological pattern and process. We recommend using the following criteria to stratify a global survey design: biogeographic region, depth, horizontal distance, substrate type, high and low climate hazard, fished/unfished, near/far from sources of pollution, licensed/protected from industry activities. We consider both spatial and temporal surveys, and emphasize new biological data collection that prioritizes southern and polar latitudes, deeper (> 2000 m) depths, and midwater environments. We provide guidance on observational, experimental, and monitoring needs for different benthic and pelagic ecosystems. We then review recent efforts to standardize biological data and specimen collection and archiving, making “sampling design to knowledge application” recommendations in the context of a new global program. We also review and comment on needs, and recommend actions, to develop capacity in deep-sea research; and the role of inclusivity - from accessing indigenous and local knowledge to the sharing of technologies - as part of such a global program. We discuss the concept of a new global deep-sea biological research program ‘Challenger 150,’ highlighting what it could deliver for the Ocean Decade and UN Sustainable Development Goal 14.
  • Article
    Deep-water chemosynthetic ecosystem research during the Census of Marine Life decade and beyond : a proposed deep-ocean road map
    (Public Library of Science, 2011-08-04) German, Christopher R. ; Ramirez-Llodra, Eva ; Baker, Maria C. ; Tyler, Paul A. ; ChEss Scientific Steering Committee
    The ChEss project of the Census of Marine Life (2002–2010) helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB), the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71°N) showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72°N) are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i) continued exploration of the deep-ocean ridge-crest; (ii) increased focus on anthropogenic impacts; (iii) concerted effort to coordinate a major investigation of the deep South Pacific Ocean – the largest contiguous habitat for life within Earth's biosphere, but also the world's least investigated deep-ocean basin.
  • Article
    Reproduction of gastropods from vents on the East Pacific Rise and the Mid-Atlantic Ridge
    (National Shellfisheries Association, 2008-03) Tyler, Paul A. ; Pendlebury, Sophie ; Mills, Susan W. ; Mullineaux, Lauren S. ; Eckelbarger, Kevin J. ; Baker, Maria C. ; Young, Craig M.
    The gametogenic biology is described for seven species of gastropod from hydrothermal vents in the East Pacific and from the Mid-Atlantic Ridge. Species of the limpet genus Lepetodrilus (Family Lepetodrilidae) had a maximum unfertilized oocyte size of <90 μm and there was no evidence of reproductive periodicity or spatial variation in reproductive pattern. Individuals showed early maturity with females undergoing gametogenesis at less than one third maximum body size. There was a power relationship between shell length and fecundity, with a maximum of 1,800 oocytes being found in one individual, although individual fecundity was usually <1,000. Such an egg size might be indicative of planktotrophic larval development, but there was never any indication of shell growth in larvae from species in this genus. Cyathermia naticoides (Family Neomphalidea) had a maximum oocyte size of 120 μm and a fecundity of <400 oocytes per individual. Rhynchopelta concentrica (Family Peltospiridae) had a maximum oocyte size of 184 μm and a fecundity <600, whereas in Eulepetopsis vitrea (Family Neolepetopsidae) maximum oocyte size was 232 μm with a fecundity of <200 oocytes per individual. In none of these three species was there any indication of episodicity in oocyte production. From our observations we support the paradigm that there is no reproductive pattern typical of vent systems but is more related to species' phylogeny.
  • Article
    sFDvent: a global trait database for deep-sea hydrothermal-vent fauna
    (Wiley, 2019-07-30) Chapman, Abbie S. A. ; Beaulieu, Stace E. ; Colaço, Ana ; Gebruk, Andrey V. ; Hilario, Ana ; Kihara, Terue C. ; Ramirez-Llodra, Eva ; Sarrazin, Jozée ; Tunnicliffe, Verena ; Amon, Diva ; Baker, Maria C. ; Boschen‐Rose, Rachel E. ; Chen, Chong ; Cooper, Isabelle J. ; Copley, Jonathan T. ; Corbari, Laure ; Cordes, Erik E. ; Cuvelier, Daphne ; Duperron, Sébastien ; Du Preez, Cherisse ; Gollner, Sabine ; Horton, Tammy ; Hourdez, Stephane ; Krylova, Elena M. ; Linse, Katrin ; LokaBharathi, P. A. ; Marsh, Leigh ; Matabos, Marjolaine ; Mills, Susan W. ; Mullineaux, Lauren S. ; Rapp, Hans Tore ; Reid, William D. K. ; Rybakova, Elena Goroslavskaya ; Thomas, Tresa Remya A. ; Southgate, Samuel James ; Stöhr, Sabine ; Turner, Phillip J. ; Watanabe, Hiromi K. ; Yasuhara, Moriaki ; Bates, Amanda E.
    Motivation Traits are increasingly being used to quantify global biodiversity patterns, with trait databases growing in size and number, across diverse taxa. Despite growing interest in a trait‐based approach to the biodiversity of the deep sea, where the impacts of human activities (including seabed mining) accelerate, there is no single repository for species traits for deep‐sea chemosynthesis‐based ecosystems, including hydrothermal vents. Using an international, collaborative approach, we have compiled the first global‐scale trait database for deep‐sea hydrothermal‐vent fauna – sFDvent (sDiv‐funded trait database for the Functional Diversity of vents). We formed a funded working group to select traits appropriate to: (a) capture the performance of vent species and their influence on ecosystem processes, and (b) compare trait‐based diversity in different ecosystems. Forty contributors, representing expertise across most known hydrothermal‐vent systems and taxa, scored species traits using online collaborative tools and shared workspaces. Here, we characterise the sFDvent database, describe our approach, and evaluate its scope. Finally, we compare the sFDvent database to similar databases from shallow‐marine and terrestrial ecosystems to highlight how the sFDvent database can inform cross‐ecosystem comparisons. We also make the sFDvent database publicly available online by assigning a persistent, unique DOI. Main types of variable contained Six hundred and forty‐six vent species names, associated location information (33 regions), and scores for 13 traits (in categories: community structure, generalist/specialist, geographic distribution, habitat use, life history, mobility, species associations, symbiont, and trophic structure). Contributor IDs, certainty scores, and references are also provided. Spatial location and grain Global coverage (grain size: ocean basin), spanning eight ocean basins, including vents on 12 mid‐ocean ridges and 6 back‐arc spreading centres. Time period and grain sFDvent includes information on deep‐sea vent species, and associated taxonomic updates, since they were first discovered in 1977. Time is not recorded. The database will be updated every 5 years. Major taxa and level of measurement Deep‐sea hydrothermal‐vent fauna with species‐level identification present or in progress. Software format .csv and MS Excel (.xlsx).