Chen Rongmin

No Thumbnail Available
Last Name
Chen
First Name
Rongmin
ORCID

Search Results

Now showing 1 - 1 of 1
  • Article
    Parkinson's disease protein DJ-1 regulates ATP synthase protein components to increase neuronal process outgrowth
    (Springer Nature, 2019-06-13) Chen, Rongmin ; Park, Han-A ; Mnatsakanyan, Nelli ; Niu, Yulong ; Licznerski, Pawel ; Wu, Jing ; Miranda, Paige ; Graham, Morven ; Tang, Jack ; Boon, Agnita J. W. ; Cossu, Giovanni ; Mandemakers, Wim ; Bonifati, Vincenzo ; Smith, Peter J. S. ; Alavian, Kambiz N. ; Jonas, Elizabeth A.
    Familial Parkinson’s disease (PD) protein DJ-1 mutations are linked to early onset PD. We have found that DJ-1 binds directly to the F1FO ATP synthase β subunit. DJ-1’s interaction with the β subunit decreased mitochondrial uncoupling and enhanced ATP production efficiency while in contrast mutations in DJ-1 or DJ-1 knockout increased mitochondrial uncoupling, and depolarized neuronal mitochondria. In mesencephalic DJ-1 KO cultures, there was a progressive loss of neuronal process extension. This was ameliorated by a pharmacological reagent, dexpramipexole, that binds to ATP synthase, closing a mitochondrial inner membrane leak and enhancing ATP synthase efficiency. ATP synthase c-subunit can form an uncoupling channel; we measured, therefore, ATP synthase F1 (β subunit) and c-subunit protein levels. We found that ATP synthase β subunit protein level in the DJ-1 KO neurons was approximately half that found in their wild-type counterparts, comprising a severe defect in ATP synthase stoichiometry and unmasking c-subunit. We suggest that DJ-1 enhances dopaminergic cell metabolism and growth by its regulation of ATP synthase protein components.