Gregor
Luke
Gregor
Luke
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleConstraining Southern Ocean air-sea-ice fluxes through enhanced observations(Frontiers Media, 2019-07-31) Swart, Sebastiaan ; Gille, Sarah T. ; Delille, Bruno ; Josey, Simon A. ; Mazloff, Matthew R. ; Newman, Louise ; Thompson, Andrew F. ; Thomson, James M. ; Ward, Brian ; du Plessis, Marcel ; Kent, Elizabeth ; Girton, James B. ; Gregor, Luke ; Heil, Petra ; Hyder, Patrick ; Pezzi, Luciano Ponzi ; de Souza, Ronald Buss ; Tamsitt, Veronica ; Weller, Robert A. ; Zappa, Christopher J.Air-sea and air-sea-ice fluxes in the Southern Ocean play a critical role in global climate through their impact on the overturning circulation and oceanic heat and carbon uptake. The challenging conditions in the Southern Ocean have led to sparse spatial and temporal coverage of observations. This has led to a “knowledge gap” that increases uncertainty in atmosphere and ocean dynamics and boundary-layer thermodynamic processes, impeding improvements in weather and climate models. Improvements will require both process-based research to understand the mechanisms governing air-sea exchange and a significant expansion of the observing system. This will improve flux parameterizations and reduce uncertainty associated with bulk formulae and satellite observations. Improved estimates spanning the full Southern Ocean will need to take advantage of ships, surface moorings, and the growing capabilities of autonomous platforms with robust and miniaturized sensors. A key challenge is to identify observing system sampling requirements. This requires models, Observing System Simulation Experiments (OSSEs), and assessments of the specific spatial-temporal accuracy and resolution required for priority science and assessment of observational uncertainties of the mean state and direct flux measurements. Year-round, high-quality, quasi-continuous in situ flux measurements and observations of extreme events are needed to validate, improve and characterize uncertainties in blended reanalysis products and satellite data as well as to improve parameterizations. Building a robust observing system will require community consensus on observational methodologies, observational priorities, and effective strategies for data management and discovery.
-
ArticleMagnitude, trends, and variability of the global ocean carbon sink from 1985‐2018(American Geophysical Union, 2023-09-11) DeVries, Tim ; Yamamoto, Kana ; Wanninkhof, Rik ; Gruber, Nicolas ; Hauck, Judith ; Muller, Jens Daniel ; Bopp, Laurent ; Carroll, Dustin ; Carter, Brendan ; Chau, Thi-Tuyet-Trang ; Doney, Scott C. ; Gehlen, Marion ; Gloege, Lucas ; Gregor, Luke ; Henson, Stephanie A. ; Kim, Ji-Hyun ; Iida, Yosuke ; Ilyina, Tatiana ; Landschutzer, Peter ; Le Quere, Corinne ; Munro, David R. ; Nissen, Cara ; Patara, Lavinia ; Perez, Fiz F. ; Resplandy, Laure ; Rodgers, Keith B. ; Schwinger, Jorg ; Seferian, Roland ; Sicardi, Valentina ; Terhaar, Jens ; Trinanes, Joaquin ; Tsujino, Hiroyuki ; Watson, Andrew J. ; Yasunaka, Sayaka ; Zeng, JiyeThis contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985–2018, using a combination of models and observation-based products. The mean sea-air CO2 flux from 1985 to 2018 is −1.6 ± 0.2 PgC yr−1 based on an ensemble of reconstructions of the history of sea surface pCO2 (pCO2 products). Models indicate that the dominant component of this flux is the net oceanic uptake of anthropogenic CO2, which is estimated at −2.1 ± 0.3 PgC yr−1 by an ensemble of ocean biogeochemical models, and −2.4 ± 0.1 PgC yr−1 by two ocean circulation inverse models. The ocean also degasses about 0.65 ± 0.3 PgC yr−1 of terrestrially derived CO2, but this process is not fully resolved by any of the models used here. From 2001 to 2018, the pCO2 products reconstruct a trend in the ocean carbon sink of −0.61 ± 0.12 PgC yr−1 decade−1, while biogeochemical models and inverse models diagnose an anthropogenic CO2-driven trend of −0.34 ± 0.06 and −0.41 ± 0.03 PgC yr−1 decade−1, respectively. This implies a climate-forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is mainly driven by climate variability, with the climate-driven variability exceeding the CO2-forced variability by 2–3 times. These results suggest that anthropogenic CO2 dominates the ocean CO2 sink, while climate-driven variability is potentially large but highly uncertain and not consistently captured across different methods.
-
ArticleThe Southern Ocean Carbon Cycle 1985–2018: Mean, Seasonal Cycle, Trends, and Storage(American Geophysical Union, 2023-11-10) Hauck, Judith ; Gregor, Luke ; Nissen, Cara ; Patara, Lavinia ; Hague, Mark ; Mongwe, Precious ; Bushinsky, Seth ; Doney, Scott C. ; Gruber, Nicolas ; Le Quere, Corinne ; Manizza, Manfredi ; Mazloff, Matthew R. ; Monteiro, Pedro M. S. ; Terhaar, JensWe assess the Southern Ocean CO2 uptake (1985–2018) using data sets gathered in the REgional Carbon Cycle Assessment and Processes Project Phase 2. The Southern Ocean acted as a sink for CO2 with close agreement between simulation results from global ocean biogeochemistry models (GOBMs, 0.75 ± 0.28 PgC yr−1) and pCO2-observation-based products (0.73 ± 0.07 PgC yr−1). This sink is only half that reported by RECCAP1 for the same region and timeframe. The present-day net uptake is to first order a response to rising atmospheric CO2, driving large amounts of anthropogenic CO2 (Cant) into the ocean, thereby overcompensating the loss of natural CO2 to the atmosphere. An apparent knowledge gap is the increase of the sink since 2000, with pCO2-products suggesting a growth that is more than twice as strong and uncertain as that of GOBMs (0.26 ± 0.06 and 0.11 ± 0.03 Pg C yr−1 decade−1, respectively). This is despite nearly identical pCO2 trends in GOBMs and pCO2-products when both products are compared only at the locations where pCO2 was measured. Seasonal analyses revealed agreement in driving processes in winter with uncertainty in the magnitude of outgassing, whereas discrepancies are more fundamental in summer, when GOBMs exhibit difficulties in simulating the effects of the non-thermal processes of biology and mixing/circulation. Ocean interior accumulation of Cant points to an underestimate of Cant uptake and storage in GOBMs. Future work needs to link surface fluxes and interior ocean transport, build long overdue systematic observation networks and push toward better process understanding of drivers of the carbon cycle.