Suhr G.

No Thumbnail Available
Last Name
Suhr
First Name
G.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Drilling constraints on lithospheric accretion and evolution at Atlantis Massif, Mid-Atlantic Ridge 30°N
    (American Geophysical Union, 2011-07-19) Blackman, Donna K. ; Ildefonse, Benoit ; John, Barbara E. ; Ohara, Y. ; Miller, D. J. ; Abe, Natsue ; Abratis, M. ; Andal, E. S. ; Andreani, Muriel ; Awaji, S. ; Beard, J. S. ; Brunelli, Daniele ; Charney, A. B. ; Christie, D. M. ; Collins, John A. ; Delacour, A. G. ; Delius, H. ; Drouin, M. ; Einaudi, F. ; Escartin, Javier E. ; Frost, B. R. ; Fruh-Green, Gretchen L. ; Fryer, P. B. ; Gee, Jeffrey S. ; Grimes, C. B. ; Halfpenny, A. ; Hansen, H.-E. ; Harris, Amber C. ; Tamura, A. ; Hayman, Nicholas W. ; Hellebrand, Eric ; Hirose, T. ; Hirth, Greg ; Ishimaru, S. ; Johnson, Kevin T. M. ; Karner, G. D. ; Linek, M. ; MacLeod, Christopher J. ; Maeda, J. ; Mason, O..U. ; McCaig, A. M. ; Michibayashi, K. ; Morris, Antony ; Nakagawa, T. ; Nozaka, Toshio ; Rosner, Martin ; Searle, Roger C. ; Suhr, G. ; Tominaga, Masako ; von der Handt, A. ; Yamasaki, T. ; Zhao, Xixi
    Expeditions 304 and 305 of the Integrated Ocean Drilling Program cored and logged a 1.4 km section of the domal core of Atlantis Massif. Postdrilling research results summarized here constrain the structure and lithology of the Central Dome of this oceanic core complex. The dominantly gabbroic sequence recovered contrasts with predrilling predictions; application of the ground truth in subsequent geophysical processing has produced self-consistent models for the Central Dome. The presence of many thin interfingered petrologic units indicates that the intrusions forming the domal core were emplaced over a minimum of 100–220 kyr, and not as a single magma pulse. Isotopic and mineralogical alteration is intense in the upper 100 m but decreases in intensity with depth. Below 800 m, alteration is restricted to narrow zones surrounding faults, veins, igneous contacts, and to an interval of locally intense serpentinization in olivine-rich troctolite. Hydration of the lithosphere occurred over the complete range of temperature conditions from granulite to zeolite facies, but was predominantly in the amphibolite and greenschist range. Deformation of the sequence was remarkably localized, despite paleomagnetic indications that the dome has undergone at least 45° rotation, presumably during unroofing via detachment faulting. Both the deformation pattern and the lithology contrast with what is known from seafloor studies on the adjacent Southern Ridge of the massif. There, the detachment capping the domal core deformed a 100 m thick zone and serpentinized peridotite comprises ∼70% of recovered samples. We develop a working model of the evolution of Atlantis Massif over the past 2 Myr, outlining several stages that could explain the observed similarities and differences between the Central Dome and the Southern Ridge.
  • Preprint
    Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209) : implications for fluid/rock interaction in slow spreading environments
    ( 2006-04-21) Paulick, Holger ; Bach, Wolfgang ; Godard, M. ; de Hoog, Jan C. M. ; Suhr, G. ; Harvey, Jason
    Abyssal peridotite from the 15°20’N area of the Mid-Atlantic Ridge show complex geochemical variations among the different sites drilled during ODP Leg 209. Major element compositions indicate variable degrees of melt depletion and refertilization as well as local hydrothermal metasomatism. Strongest evidence for melt-rock interactions are correlated Light Rare Earth Element (LREE) and High Field Strength Element (HFSE) additions at sites 1270 and 1271. In contrast, hydrothermal alteration at Sites 1274, 1272, and 1268 causes LREE mobility associated with minor HFSE variability, reflecting the low solubility of HFSE in aqueous solutions. Site 1274 contains the least-altered, highly refractory, peridotite with strong depletion in LREE and shows a gradual increase in the intensity of isochemical serpentinization; except for the addition of H2O which causes a mass gain of up to 20 g/100 g. The formation of magnetite is reflected in decreasing Fe2+/Fe3+ ratios. This style of alteration is referred to as rock-dominated serpentinization. In contrast, fluid-dominated serpentinization at Site 1268 is characterized by gains in sulfur and development of U-shaped REE pattern with strong positive Eu anomalies which are also characteristic for hot (350 to 400°C) vent-type fluids discharging from black smoker fields. Serpentinites at Site 1268 were overprinted by talc alteration under static conditions due to interaction with high aSiO2 fluids causing the development of smooth, LREE-enriched patterns with pronounced negative Eu anomalies. These results show that hydrothermal fluid-peridotite and fluid-serpentinite interaction processes are an important factor regarding the budget of exchange processes between the lithosphere and the hydrosphere in slow spreading environments.