Murty V. S. N.

No Thumbnail Available
Last Name
Murty
First Name
V. S. N.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    RAMA : the Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction
    (American Meteorological Society, 2009-04) McPhaden, Michael J. ; Meyers, G. ; Ando, Kentaro ; Masumoto, Yukio ; Murty, V. S. N. ; Ravichandran, M. ; Syamsudin, F. ; Vialard, Jérôme ; Yu, Lisan ; Yu, W.
    The Indian Ocean is unique among the three tropical ocean basins in that it is blocked at 25°N by the Asian landmass. Seasonal heating and cooling of the land sets the stage for dramatic monsoon wind reversals, strong ocean–atmosphere interactions, and intense seasonal rains over the Indian subcontinent, Southeast Asia, East Africa, and Australia. Recurrence of these monsoon rains is critical to agricultural production that supports a third of the world's population. The Indian Ocean also remotely influences the evolution of El Niño–Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), North American weather, and hurricane activity. Despite its importance in the regional and global climate system though, the Indian Ocean is the most poorly observed and least well understood of the three tropical oceans. This article describes the Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction (RAMA), a new observational network designed to address outstanding scientific questions related to Indian Ocean variability and the monsoons. RAMA is a multinationally supported element of the Indian Ocean Observing System (IndOOS), a combination of complementary satellite and in situ measurement platforms for climate research and forecasting. The article discusses the scientific rationale, design criteria, and implementation of the array. Initial RAMA data are presented to illustrate how they contribute to improved documentation and understanding of phenomena in the region. Applications of the data for societal benefit are also described.
  • Article
    Effects of freshwater stratification on nutrients, dissolved oxygen, and phytoplankton in the Bay of Bengal
    (The Oceanography Society, 2016-06) Sarma, V. V. S. S. ; Rao, G. S. ; Viswanadham, R. ; Sherin, C. K. ; Salisbury, Joseph E. ; Omand, Melissa M. ; Mahadevan, Amala ; Murty, V. S. N. ; Shroyer, Emily L. ; Baumgartner, Mark F. ; Stafford, Kathleen M.
    The Bay of Bengal (BoB) is strongly density stratified due to large freshwater input from various rivers and heavy precipitation. This strong vertical stratification, along with physical processes, regulates the transport and vertical exchange of surface and subsurface water, concentrating nutrients and intensifying the oxygen minimum zone (OMZ). Here, we use basinwide measurements to describe the spatial distributions of nutrients, oxygen, and phytoplankton within the BoB during the 2013 northeast monsoon (November–December). By the time riverine water reaches the interior bay, it is depleted in the nutrients nitrate and phosphate, but not silicate. Layering of freshwater in the northern BoB depresses isopycnals, leading to a deepening of the nutricline and oxycline. Oxygen concentrations in the OMZ are lowest in the north (<5 µM). Weak along-isopycnal nutrient gradients reflect along-isopycnal stirring between ventilated surface water and deep nutrient-replenished water. Picoplankton dominate the phytoplankton population in the north, presumably outcompeting larger phytoplankton species due to their low nutrient requirements. Micro- and nanoplankton numbers are enhanced in regions with deeper mixed layers and weaker stratification, where nutrient replenishment from subsurface waters is more feasible. These are also the regions where marine mammals were sighted. Physical processes and the temperature-salinity structure in the BoB directly influence the OMZ and the depth of the oxycline and nutricline, thereby affecting the phytoplankton and marine mammal communities.
  • Article
    Supplement to RAMA : the Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction
    (American Meteorological Society, 2009-04) McPhaden, Michael J. ; Meyers, G. ; Ando, Kentaro ; Masumoto, Yukio ; Murty, V. S. N. ; Ravichandran, M. ; Syamsudin, F. ; Vialard, Jérôme ; Yu, Lisan ; Yu, W.