Gerlich
Daniel W.
Gerlich
Daniel W.
No Thumbnail Available
Search Results
Now showing
1 - 4 of 4
-
PreprintCellCognition : time-resolved phenotype annotation in high-throughput live cell imaging( 2010-07) Held, Michael ; Schmitz, Michael H. A. ; Fischer, Bernd ; Walter, Thomas ; Neumann, Beate ; Olma, Michael H. ; Peter, Matthias ; Ellenberg, Jan ; Gerlich, Daniel W.Fluorescence time-lapse imaging has become a powerful tool to investigate complex dynamic processes such as cell division or intracellular trafficking. Automated microscopes generate time-resolved imaging data at high throughput, yet tools for quantification of large-scale movie data are largely missing. Here, we present CellCognition, a computational framework to annotate complex cellular dynamics. We developed a machine learning method that combines state-of-the-art classification with hidden Markov modeling for annotation of the progression through morphologically distinct biological states. The incorporation of time information into the annotation scheme was essential to suppress classification noise at state transitions, and confusion between different functional states with similar morphology. We demonstrate generic applicability in a set of different assays and perturbation conditions, including a candidate-based RNAi screen for mitotic exit regulators in human cells. CellCognition is published as open source software, enabling live imaging-based screening with assays that directly score cellular dynamics.
-
ArticleCytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin network composed of randomly oriented filaments(eLife, 2017-11-06) Spira, Felix ; Cuylen-Haering, Sara ; Mehta, Shalin B. ; Samwer, Matthias ; Reversat, Anne ; Verma, Amitabh ; Oldenbourg, Rudolf ; Sixt, Michael ; Gerlich, Daniel W.The actomyosin ring generates force to ingress the cytokinetic cleavage furrow in animal cells, yet its filament organization and the mechanism of contractility is not well understood. We quantified actin filament order in human cells using fluorescence polarization microscopy and found that cleavage furrow ingression initiates by contraction of an equatorial actin network with randomly oriented filaments. The network subsequently gradually reoriented actin filaments along the cell equator. This strictly depended on myosin II activity, suggesting local network reorganization by mechanical forces. Cortical laser microsurgery revealed that during cytokinesis progression, mechanical tension increased substantially along the direction of the cell equator, while the network contracted laterally along the pole-to-pole axis without a detectable increase in tension. Our data suggest that an asymmetric increase in cortical tension promotes filament reorientation along the cytokinetic cleavage furrow, which might have implications for diverse other biological processes involving actomyosin rings.
-
PreprintKinetic framework of spindle assembly checkpoint signaling( 2013-08) Dick, Amalie E. ; Gerlich, Daniel W.The mitotic spindle assembly checkpoint (SAC) delays anaphase onset until all chromosomes have attached to both spindle poles1, 2. Here, we investigated SAC signaling kinetics in response to acute detachment of individual chromosomes using laser microsurgery. Most detached chromosomes delayed anaphase until they had realigned to the metaphase plate. A substantial fraction of cells, however, entered anaphase in the presence of unaligned chromosomes. We identify two mechanisms by which cells can bypass the SAC: First, single unattached chromosomes inhibit the anaphase promoting complex/cyclosome (APC/C) less efficiently than a full complement of unattached chromosomes. Second, because of the relatively slow kinetics of reimposing APC/C inhibition during metaphase, cells were unresponsive to chromosome detachment up to several minutes before anaphase onset. Our study defines when cells irreversibly commit to enter anaphase and shows that the SAC signal strength correlates with the number of unattached chromosomes. Detailed knowledge about SAC signaling kinetics is important for understanding the emergence of aneuploidy and the response of cancer cells to chemotherapeutics targeting the mitotic spindle.
-
PreprintLive-cell imaging RNAi screen identifies PP2A–B55α and importin-β1 as key mitotic exit regulators in human cells( 2010-07) Schmitz, Michael H. A. ; Held, Michael ; Janssens, Veerle ; Hutchins, James R. A. ; Hudecz, Otto ; Ivanova, Elitsa ; Goris, Jozef ; Trinkle-Mulcahy, Laura ; Lamond, Angus I. ; Poser, Ina ; Hyman, Anthony A. ; Mechtler, Karl ; Peters, Jan-Michael ; Gerlich, Daniel W.When vertebrate cells exit mitosis, they reorganize various cellular structures to build functional interphase cells1. This depends on Cdk1 inactivation and subsequent dephosphorylation of its substrates2-4. Members of PP1 and PP2A phosphatase families can dephosphorylate Cdk1 substrates in biochemical extracts during mitotic exit5, 6, but how this relates to postmitotic reassembly of interphase structures in intact cells is not known. Here, we used a live imaging assay to screen by RNAi a genome-wide library of protein phosphatases for mitotic exit functions in human cells. We identified a trimeric PP2A-B55α complex as a key factor for postmitotic reassembly of the nuclear envelope, the Golgi apparatus, and decondensed chromatin, as well as for mitotic spindle breakdown. Using a chemically-induced mitotic exit assay, we found that PP2A-B55α functions downstream of Cdk1 inactivation. PP2A-B55α isolated from mitotic cells had reduced phosphatase activity towards the Cdk1 substrate histone H1 and it was hyper-phosphorylated on all subunits. Mitotic PP2A complexes co-purified with the nuclear transport factor Importin β1, and RNAi depletion of Importin β1 delayed mitotic exit synergistically with PP2A-B55α. This demonstrates that PP2A-B55α and Importin β1 cooperate in the regulation of postmitotic assembly mechanisms in human cells.