Lin Huichan

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 20 of 20
  • Article
    Process modeling studies of physical mechanisms of the formation of an anticyclonic eddy in the central Red Sea
    (John Wiley & Sons, 2014-02-25) Chen, Changsheng ; Li, Ruixiang ; Pratt, Lawrence J. ; Limeburner, Richard ; Beardsley, Robert C. ; Bower, Amy S. ; Jiang, Houshuo ; Abualnaja, Yasser ; Xu, Qichun ; Lin, Huichan ; Liu, Xuehai ; Lan, Jian ; Kim, Taewan
    Surface drifters released in the central Red Sea during April 2010 detected a well-defined anticyclonic eddy around 23°N. This eddy was ∼45–60 km in radius, with a swirl speed up to ∼0.5 m/s. The eddy feature was also evident in monthly averaged sea surface height fields and in current profiles measured on a cross-isobath, shipboard CTD/ADCP survey around that region. The unstructured-grid, Finite-Volume Community Ocean Model (FVCOM) was configured for the Red Sea and process studies were conducted to establish the conditions necessary for the eddy to form and to establish its robustness. The model was capable of reproducing the observed anticyclonic eddy with the same location and size. Diagnosis of model results suggests that the eddy can be formed in a Red Sea that is subject to seasonally varying buoyancy forcing, with no wind, but that its location and structure are significantly altered by wind forcing, initial distribution of water stratification and southward coastal flow from the upstream area. Momentum analysis indicates that the flow field of the eddy was in geostrophic balance, with the baroclinic pressure gradient forcing about the same order of magnitude as the surface pressure gradient forcing.
  • Article
    Using MM5 to hindcast the ocean surface forcing fields over the Gulf of Maine and Georges Bank Region
    (American Meteorological Society, 2005-02) Chen, Changsheng ; Beardsley, Robert C. ; Hu, Song ; Xu, Qichun ; Lin, Huichan
    The fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) is applied to the Gulf of Maine/Georges Bank (GoM/GB) region. This model is configured with two numerical domains with horizontal resolutions of 30 and 10 km, respectively, and driven by the NCAR-Eta weather model through a nested grid approach. Comparison of model-computed winds, wind stress, and heat flux with in situ data collected on moored meteorological buoys in the western GoM and over GB in 1995 shows that during the passage of atmospheric fronts over this region, MM5 provides a reasonable prediction of wind speed but not wind direction, and provides a relatively accurate estimation of longwave radiation but overestimates sensible and latent fluxes. The nudging data assimilation approach with inclusion of in situ wind data significantly improves the accuracy of the predicted wind speed and direction. Incorporation of the Fairall et al. air–sea flux algorithms with inclusion of Advanced Very High Resolution Radiometer (AVHRR)-derived SST improves the accuracy of the predicted latent and sensible heat fluxes in the GoM/GB region for both stable and unstable weather conditions.
  • Article
    Reply to comment on “Current separation and upwelling over the southeast shelf of Vietnam in the South China Sea”
    (John Wiley & Sons, 2013-03-31) Chen, Changsheng ; Lai, Zhigang ; Beardsley, Robert C. ; Xu, Qichun ; Lin, Huichan ; Viet, Nguyen Trung ; Yang, Ding
  • Article
    Extratropical storm inundation testbed : intermodel comparisons in Scituate, Massachusetts
    (John Wiley & Sons, 2013-10-07) Chen, Changsheng ; Beardsley, Robert C. ; Luettich, Richard A. ; Westerink, Joannes J. ; Wang, Harry ; Perrie, Will ; Xu, Qichun ; Donahue, Aaron S. ; Qi, Jianhua ; Lin, Huichan ; Zhao, Liuzhi ; Kerr, Patrick C. ; Meng, Yanqiu ; Toulany, Bash
    The Integrated Ocean Observing System Super-regional Coastal Modeling Testbed had one objective to evaluate the capabilities of three unstructured-grid fully current-wave coupled ocean models (ADCIRC/SWAN, FVCOM/SWAVE, SELFE/WWM) to simulate extratropical storm-induced inundation in the US northeast coastal region. Scituate Harbor (MA) was chosen as the extratropical storm testbed site, and model simulations were made for the 24–27 May 2005 and 17–20 April 2007 (“Patriot's Day Storm”) nor'easters. For the same unstructured mesh, meteorological forcing, and initial/boundary conditions, intermodel comparisons were made for tidal elevation, surface waves, sea surface elevation, coastal inundation, currents, and volume transport. All three models showed similar accuracy in tidal simulation and consistency in dynamic responses to storm winds in experiments conducted without and with wave-current interaction. The three models also showed that wave-current interaction could (1) change the current direction from the along-shelf direction to the onshore direction over the northern shelf, enlarging the onshore water transport and (2) intensify an anticyclonic eddy in the harbor entrance and a cyclonic eddy in the harbor interior, which could increase the water transport toward the northern peninsula and the southern end and thus enhance flooding in those areas. The testbed intermodel comparisons suggest that major differences in the performance of the three models were caused primarily by (1) the inclusion of wave-current interaction, due to the different discrete algorithms used to solve the three wave models and compute water-current interaction, (2) the criterions used for the wet-dry point treatment of the flooding/drying process simulation, and (3) bottom friction parameterizations.
  • Article
    Saltwater intrusion into the Changjiang River : a model-guided mechanism study
    (American Geophysical Union, 2009-02-12) Xue, Pengfei ; Chen, Changsheng ; Ding, Pingxing ; Beardsley, Robert C. ; Lin, Huichan ; Ge, Jianzhong ; Kong, Yazhen
    The Changjiang River (CR) is divided into a southern branch (SB) and a northern branche (NB) by Chongming Island as the river enters the East China Sea. Observations reveal that during the dry season the saltwater in the inner shelf of the East China Sea flows into the CR through the NB and forms an isolated mass of saltwater in the upstream area of the SB. The physical mechanism causing this saltwater intrusion has been studied using the high-resolution unstructured-grid Finite-Volume Coastal Ocean Model (FVCOM). The results suggest that the intrusion is caused by a complex nonlinear interaction process in relation to the freshwater flux upstream, tidal currents, mixing, wind, and the salt distribution in the inner shelf of the East China Sea. The tidal rectification, resulting from the interaction of the convergence or divergence of tidal momentum flux and bottom friction over abrupt topography, produces a net upstreamward volume flux from NB to SB. With river discharge the net water transport in the NB is driven through a momentum balance of surface elevation gradient forcing, horizontal advection, and vertical diffusion. In the dry season, reducing the surface elevation gradient forcing makes tidal rectification a key process favorable for the saltwater intrusion. A northerly wind tends to enhance the saltwater intrusion by reducing the seaward surface elevation gradient forcing rather than either the baroclinic pressure gradient forcing or the wind-driven Ekman transport. A convergence experiment suggests that high grid resolution (∼100 m or less) is required to correctly resolve the net water transport through the NB, particularly in the narrow channel on the northern coast of Chongming Island.
  • Article
    Wetland-estuarine-shelf interactions in the Plum Island Sound and Merrimack River in the Massachusetts coast
    (American Geophysical Union, 2010-10-16) Zhao, Liuzhi ; Chen, Changsheng ; Vallino, Joseph J. ; Hopkinson, Charles S. ; Beardsley, Robert C. ; Lin, Huichan ; Lerczak, James A.
    Wetland-estuarine-shelf interaction processes in the Plum Island Sound and Merrimack River system in the Massachusetts coast are examined using the high-resolution unstructured grid, finite volume, primitive equations, coastal ocean model. The computational domain covers the estuarine and entire intertidal area with a horizontal resolution of 10–200 m. Driven by five tidal constituents forcing at the open boundary on the inner shelf of the eastern coast of the Gulf of Maine, the model has successfully simulated the 3-D flooding/drying process, temporal variability, and spatial distribution of salinity as well as the water exchange flux through the water passage between the Plum Island Sound and Merrimack River. The model predicts a complex recirculation loop around the Merrimack River, shelf, and Plum Island Sound. During the ebb tide, salt water in the Plum Island Sound is injected into the Merrimack River, while during flood tide, a significant amount of the freshwater in the Merrimack River is forced into Plum Island Sound. This water exchange varies with the magnitude of freshwater discharge and wind conditions, with a maximum contribution of ∼30%–40% variability in salinity over tidal cycles in the mouth of the Merrimack River. Nonlinear tidal rectification results in a complex clockwise residual recirculation loop around the Merrimack River, shelf, and Plum Island Sound. The net water flux from Plum Island Sound to the Merrimack River varies with the interaction between tide, river discharge, and wind forcing. This interaction, in turn, affects the salt transport from this system to the shelf. Since the resulting water transport into the shelf significantly varies with the variability of the wind, models that fail to resolve this complex estuarine and shelf system could either overestimate or underestimate the salt content over the shelf.
  • Article
    Complexity of the flooding/drying process in an estuarine tidal-creek salt-marsh system : an application of FVCOM
    (American Geophysical Union, 2008-07-30) Chen, Changsheng ; Qi, Jianhua ; Li, Chunyan ; Beardsley, Robert C. ; Lin, Huichan ; Walker, Randy ; Gates, Keith
    The tidal flooding/drying process in the Satilla River Estuary was examined using an unstructured-grid finite-volume coastal ocean model (FVCOM). Driven by tidal forcing at the open boundary and river discharge at the upstream end, FVCOM produced realistic tidal flushing in this estuarine tidal-creek intertidal salt-marsh complex, amplitudes and phases of the tidal wave, and salinity observed at mooring sites and along hydrographic transects. The model-predicted residual flow field is characterized by multiscale eddies in the main channel, which are verified by ship-towed ADCP measurements. To examine the impact of complex coastal geometry on water exchange in an estuarine tidal-creek salt-marsh system, FVCOM was compared with our previous structured-grid finite difference Satilla River Estuary model (ECOM-si). The results suggest that by failing to resolve the complex coastal geometry of tidal creeks, barriers and islands, a model can generate unrealistic flow and water exchange and thus predict the wrong dynamics for this estuary. A mass-conservative unstructured-grid model is required to accurately and efficiently simulate tidal flow and flushing in a complex geometrically controlled estuarine dynamical system.
  • Article
    Studies of the Canadian Arctic Archipelago water transport and its relationship to basin-local forcings : results from AO-FVCOM
    (John Wiley & Sons, 2016-06-25) Zhang, Yu ; Chen, Changsheng ; Beardsley, Robert C. ; Gao, Guoping ; Lai, Zhigang ; Curry, Beth ; Lee, Craig M. ; Lin, Huichan ; Qi, Jianhua ; Xu, Qichun
    A high-resolution (up to 2 km), unstructured-grid, fully coupled Arctic sea ice-ocean Finite-Volume Community Ocean Model (AO-FVCOM) was employed to simulate the flow and transport through the Canadian Arctic Archipelago (CAA) over the period 1978–2013. The model-simulated CAA outflow flux was in reasonable agreement with the flux estimated based on measurements across Davis Strait, Nares Strait, Lancaster Sound, and Jones Sounds. The model was capable of reproducing the observed interannual variability in Davis Strait and Lancaster Sound. The simulated CAA outflow transport was highly correlated with the along-strait and cross-strait sea surface height (SSH) difference. Compared with the wind forcing, the sea level pressure (SLP) played a dominant role in establishing the SSH difference and the correlation of the CAA outflow with the cross-strait SSH difference can be explained by a simple geostrophic balance. The change in the simulated CAA outflow transport through Davis Strait showed a negative correlation with the net flux through Fram Strait. This correlation was related to the variation of the spatial distribution and intensity of the slope current over the Beaufort Sea and Greenland shelves. The different basin-scale surface forcings can increase the model uncertainty in the CAA outflow flux up to 15%. The daily adjustment of the model elevation to the satellite-derived SSH in the North Atlantic region outside Fram Strait could produce a larger North Atlantic inflow through west Svalbard and weaken the outflow from the Arctic Ocean through east Greenland.
  • Preprint
    Surface circulation in Block Island Sound and adjacent coastal and shelf regions : a FVCOM-CODAR comparison
    ( 2016-02-29) Sun, Yunfang ; Chen, Changsheng ; Beardsley, Robert C. ; Ullman, Dave ; Butman, Bradford ; Lin, Huichan
    CODAR-derived surface currents in Block Island Sound over the period of June 2000 through September 2008 were compared to currents computed using the Northeast Coastal Ocean Forecast System (NECOFS). The measurement uncertainty of CODAR-derived currents, estimated using statistics of a screened nine-year time series of hourly-averaged flow field, ranged from 3-7 cm/s in speed and 4°-14° in direction. The CODAR-derived and model-computed kinetic energy spectrum densities were in good agreement at subtidal frequencies, but the NECOFS-derived currents were larger by about 28% at semi-diurnal and diurnal tidal frequencies. The short-term (hourly to daily) current variability was dominated by the semidiurnal tides (predominantly the M2 tide), which on average accounted for ~87% of the total kinetic energy. The diurnal tidal and subtidal variability accounted for ~4% and ~9% of the total kinetic energy, respectively. The monthly-averaged difference between the CODAR-derived and model-computed velocities over the study area was 6 cm/s or less in speed and 28° or less in direction over the study period. An EOF analysis for the low-frequency vertically-averaged model current field showed that the water transport in the Block Island Sound region was dominated by modes 1 and 2, which accounted for 89% and 7% of the total variance, respectively. Mode 1 represented a relatively stationary spatial and temporal flow pattern with a magnitude that varied with season. Mode 2 was characterized mainly by a secondary cross-shelf flow and a relatively strong along-shelf flow. Process-oriented model experiments indicated that the relatively stationary flow pattern found in mode 1 was a result of tidal rectification and its magnitude changed with seasonal stratification. Correlation analysis between the flow and wind stress suggested that the cross-shelf water transport and its temporal variability in mode 2 were highly correlated to the surface wind forcing. The mode 2 derived onshore and offshore water transport, and was consistent with wind-driven Ekman theory. The along-shelf water transport over the outer shelf, where a large portion of the water flowed from upstream Nantucket Shoals, was not highly correlated to the surface wind stress.
  • Article
    Tidal dynamics in the Gulf of Maine and New England Shelf : an application of FVCOM
    (American Geophysical Union, 2011-12-10) Chen, Changsheng ; Huang, Haosheng ; Beardsley, Robert C. ; Xu, Qichun ; Limeburner, Richard ; Cowles, Geoffrey W. ; Sun, Yunfang ; Qi, Jianhua ; Lin, Huichan
    The unstructured-grid, Finite-Volume Community Ocean Model (FVCOM) was used to simulate the tides in the Gulf of Maine (GoM) and New England Shelf (NES) for homogeneous and summer stratified conditions. FVCOM captures the near-resonant nature of the semidiurnal tide and energy flux in the GoM and the complex dynamics governing the tide in the NES. Stratification has limited impact on tidal elevation, but can significantly modify the tidal current profile. Internal tides are energetic in the stratified regions over steep bottom topography, but their contribution to the total tidal energy flux is only significant over the northeast flank of Georges Bank. The model suggests that the tidal flushing-induced eddy east of Monomoy Island is the dynamic basis for the locally observed phase lead of the M2 tide. The southward propagating tidal wave east of Cape Cod encounters the northeastward propagating tidal wave from the NES south of Nantucket Island, forming a zone of minimum sea level along a southeast-oriented line from Nantucket Island. These two waves are characterized by linear dynamics in which bottom friction and advection are negligible in the momentum balance, but their superposition leads to a strong nonlinear current interaction and large bottom stress in the zone of lowest sea elevation.
  • Article
    Seasonal and interannual variability of the Arctic sea ice : a comparison between AO-FVCOM and observations
    (John Wiley & Sons, 2016-11-25) Zhang, Yu ; Chen, Changsheng ; Beardsley, Robert C. ; Gao, Guoping ; Qi, Jianhua ; Lin, Huichan
    A high-resolution (up to 2 km), unstructured-grid, fully ice-sea coupled Arctic Ocean Finite-Volume Community Ocean Model (AO-FVCOM) was used to simulate the sea ice in the Arctic over the period 1978–2014. The spatial-varying horizontal model resolution was designed to better resolve both topographic and baroclinic dynamics scales over the Arctic slope and narrow straits. The model-simulated sea ice was in good agreement with available observed sea ice extent, concentration, drift velocity and thickness, not only in seasonal and interannual variability but also in spatial distribution. Compared with six other Arctic Ocean models (ECCO2, GSFC, INMOM, ORCA, NAME, and UW), the AO-FVCOM-simulated ice thickness showed a higher mean correlation coefficient of ∼0.63 and a smaller residual with observations. Model-produced ice drift speed and direction errors varied with wind speed: the speed and direction errors increased and decreased as the wind speed increased, respectively. Efforts were made to examine the influences of parameterizations of air-ice external and ice-water interfacial stresses on the model-produced bias. The ice drift direction was more sensitive to air-ice drag coefficients and turning angles than the ice drift speed. Increasing or decreasing either 10% in water-ice drag coefficient or 10° in water-ice turning angle did not show a significant influence on the ice drift velocity simulation results although the sea ice drift speed was more sensitive to these two parameters than the sea ice drift direction. Using the COARE 4.0-derived parameterization of air-water drag coefficient for wind stress did not significantly influence the ice drift velocity simulation.
  • Article
    Observational and modeling studies of oceanic responses and feedbacks to typhoons Hato and Mangkhut over the northern shelf of the South China Sea
    (Elsevier, 2021-01-01) Dong, Wenjing ; Feng, Yanqing ; Chen, Changsheng ; Wu, Zhongxiang ; Xu, Danya ; Li, Siqi ; Xu, Qichun ; Wang, Lu ; Beardsley, Robert C. ; Lin, Huichan ; Li, Ruixiang ; Chen, Junkun ; Li, Jiahui
    Meteorological and oceanic responses to Typhoons Hato and Mangkhut were captured by storm-monitoring network buoys over the northern shelf of the South China Sea. With similar shelf-traversing trajectories, these two typhoons exhibited distinctly different features in storm-induced oceanic mixing and oceanic heat transfer through the air-sea interface. A well-defined cold wake was detected underneath the storm due to a rapid drop in sea surface temperature during the Hato crossing, but not during the Mangkhut crossing. Impacts of oceanic mixing on forming a storm-produced cold wake were associated with the pre-storm condition of water stratification. In addition to oceanic mixing produced through the diffusion process by shear and buoyancy turbulence productions, the short-time scale of mixing suggested convection/overturning may play a critical role in the rapid cooling at the sea surface. The importance of convection/overturning to mixing depended on the duration of atmospheric cooling above the sea surface-the longer the atmospheric cooling, the more significant effect on mixing. Including the oceanic mixed layer (OML) in the WRF model was capable of reproducing the observed storm-induced variations of wind and air pressure, but not the air and sea surface temperatures. Process-oriented numerical experiments with the OML models supported both observational and modeling findings. To simulate the storm-induced mixing in a coupled atmospheric and oceanic model, we need to improve the physics of vertical mixing with non-hydrostatic convection/overturning. Warming over the shelf is projected to have a more energetic influence on future typhoon intensities and trajectories.
  • Article
    Observational and model studies of the circulation in the Gulf of Tonkin, South China Sea
    (John Wiley & Sons, 2013-12-03) Ding, Yang ; Chen, Changsheng ; Beardsley, Robert C. ; Bao, Xianwen ; Shi, Maochong ; Zhang, Yu ; Lai, Zhigang ; Li, Ruixiang ; Lin, Huichan ; Viet, Nguyen Trung
    Moored current measurements were made at one mooring site in the northern Gulf of Tonkin for about 1 year during 1988–1989. Analyses were performed to examine characteristics and variability of tidal and subtidal flows. Rotary spectra showed two peaks at diurnal and semidiurnal periods, with higher diurnal energy. Complex demodulations of diurnal and semidiurnal tidal currents indicated that the tidal current magnitudes varied significantly with seasons: more energetic in the stratified summer than in the vertically well-mixed winter. The observed subtidal currents were highly correlated with the surface wind in winter but not in summer; challenging the conceptual summertime anticyclonic circulation pattern derived using wind-driven homogenous circulation theory. The computed currents from a global ocean model were in good agreement with the observed currents. Similar to the current observations, the model-computed flow patterns were consistent with the conceptual wind-driven circulation pattern in winter but opposite in summer. Process-oriented experiments suggest that the summertime cyclonic circulation in the northern Gulf of Tonkin forms as a result of the combination of stratified wind-driven circulation and tidal-rectified inflow from Qiongzhou Strait. The interaction between the southwest monsoon and buoyancy-driven flow from Hong River can significantly intensify the cyclonic circulation near the surface, but its contribution to the vertically averaged flow of the cyclonic circulation is limited.
  • Article
    A wet/dry point treatment method of FVCOM, part I: stability experiments
    (MDPI, 2022-06-28) Chen, Changsheng ; Qi, Jianhua ; Liu, Hedong ; Beardsley, Robert C. ; Lin, Huichan ; Cowles, Geoffrey W.
    A 3-dimensional wet/dry point treatment method was developed for the unstructured-grid Finite-Volume Community Ocean Model (FVCOM). Analytical equations were derived to examine discretized errors that occurred during the flooding/drying process by the wet/dry point treatment for the flooding/drying process. Numerical experiments were carried out for an idealized estuary, including the inter-tidal zone. The model results show that if the ratio of internal to external mode time steps (Isplit) is appropriately selected, FVCOM was capable of simulating the flooding/drying process with sufficient accuracy to ensure the mass conservation. The up-bound limit of Isplit was restricted by the bathymetric slope of the inter-tidal zone, external mode time step, horizontal/vertical resolution, and amplitude of tidal forcing at the open boundary, as well as the thickness of the viscous layer specified in the model. Criteria for time steps via these parameters were derived from these experiments, which provide a helpful guide in selectingIsplit for applying FVCOM to realistic geometric estuaries.
  • Article
    Current separation and upwelling over the southeast shelf of Vietnam in the South China Sea
    (American Geophysical Union, 2012-03-21) Chen, Changsheng ; Lai, Zhigang ; Beardsley, Robert C. ; Xu, Qichun ; Lin, Huichan ; Viet, Nguyen Trung
    The high-resolution, unstructured grid Finite-Volume Community Ocean Model (FVCOM) was used to examine the physical mechanisms that cause current separation and upwelling over the southeast shelf of Vietnam in the South China Sea (SCS). Process-oriented experiments suggest that the southwesterly monsoon wind is a key physical mechanism for upwelling in that area but not a prerequisite to cause current separation. With no wind forcing, current separation in summer can occur as a result of the encounter of a southward along-shelf coastal current from the north and northeastward buoyancy-driven and stratified tidal-rectified currents from the southwest. The southward current can be traced upstream to the Hong River in the Gulf of Tonkin. This current is dominated by semigeostrophic dynamics and is mostly confined to the narrow shelf along the northern Vietnamese coast. The northeastward currents are generated by tidal rectification and are intensified by the Mekong River discharge and southwesterly monsoon wind forcing. The dynamics controlling this current are fully nonlinear, with significant contributions from advection and vertical turbulent mixing. Upwelling in the current separation zone can be produced by a spatially uniform constant wind field and can be explained using simple wind-induced Ekman transport theory. This finding differs from previous theory in which the regional dipole wind stress curl is claimed as a key mechanism for current separation and upwelling in this coastal region. Our SCS FVCOM, driven by the wind stress, river discharge, and tides, is capable of reproducing the location and tongue-like offshore distribution of temperature as those seen in satellite-derived sea surface temperature imagery.
  • Article
    Physical mechanisms for the offshore detachment of the Changjiang Diluted Water in the East China Sea
    (American Geophysical Union, 2008-02-02) Chen, Changsheng ; Xue, Pengfei ; Ding, Pingxing ; Beardsley, Robert C. ; Xu, Qichun ; Mao, Xianmou ; Gao, Guoping ; Qi, Jianhua ; Li, Chunyan ; Lin, Huichan ; Cowles, Geoffrey W. ; Shi, Maochong
    Physical mechanisms for the summertime offshore detachment of the Changjiang Diluted Water (CDW) into the East China Sea are examined using the high-resolution, unstructured-grid, Finite-Volume Coastal Ocean Model (FVCOM). The model results suggest that isolated low salinity water lens detected west of Cheju Island can be formed by (1) a large-scale adjustment of the flow field to the Changjiang discharge and (2) the detachment of anticyclonic eddies as a result of baroclinic instability of the CDW front. Adding the Changjiang discharge intensifies the clockwise vorticity of the subsurface current (originating from the Taiwan Warm Current) flowing along the 50-m isobath and thus drives the low-salinity water in the northern coastal area of the Changjiang mouth offshore over a submerged plateau that extends toward Cheju Island. Given a model horizontal resolution of less than 1.0 km, the CDW front becomes baroclinically unstable and forms a chain of anticyclonic and cyclonic eddies. The offshore detachment of anticyclonic eddies can carry the CDW offshore. This process is enhanced under northward winds as a result of the spatially nonuniform interaction of wind-induced Ekman flow and eddy-generated frontal density currents. Characteristics of the model-predicted eddy field are consistent with previous theoretical studies of baroclinic instability of buoyancy-driven coastal density currents and existing satellite imagery. The plume stability is controlled by the horizontal Ekman number. In the Changjiang, this number is much smaller than the criterion suggested by a theoretical analysis.
  • Article
    Initial spread of 137Cs from the Fukushima Dai-ichi Nuclear Power Plant over the Japan continental shelf : a study using a high-resolution, global-coastal nested ocean model
    (Copernicus Publications on behalf of the European Geosciences Union, 2013-08-14) Lai, Zhigang ; Chen, Changsheng ; Beardsley, Robert C. ; Lin, Huichan ; Ji, Rubao ; Sasaki, J. ; Lin, Jian
    The 11 March 2011 tsunami triggered by the M9 and M7.9 earthquakes off the Tōhoku coast destroyed facilities at the Fukushima Dai-ichi Nuclear Power Plant (FNPP) leading to a significant long-term flow of the radionuclide 137Cs into coastal waters. A high-resolution, global-coastal nested ocean model was first constructed to simulate the 11 March tsunami and coastal inundation. Based on the model's success in reproducing the observed tsunami and coastal inundation, model experiments were then conducted with differing grid resolution to assess the initial spread of 137Cs over the eastern shelf of Japan. The 137Cs was tracked as a conservative tracer (without radioactive decay) in the three-dimensional model flow field over the period of 26 March–31 August 2011. The results clearly show that for the same 137Cs discharge, the model-predicted spreading of 137Cs was sensitive not only to model resolution but also the FNPP seawall structure. A coarse-resolution (∼2 km) model simulation led to an overestimation of lateral diffusion and thus faster dispersion of 137Cs from the coast to the deep ocean, while advective processes played a more significant role when the model resolution at and around the FNPP was refined to ∼5 m. By resolving the pathways from the leaking source to the southern and northern discharge canals, the high-resolution model better predicted the 137Cs spreading in the inner shelf where in situ measurements were made at 30 km off the coast. The overestimation of 137Cs concentration near the coast is thought to be due to the omission of sedimentation and biogeochemical processes as well as uncertainties in the amount of 137Cs leaking from the source in the model. As a result, a biogeochemical module should be included in the model for more realistic simulations of the fate and spreading of 137Cs in the ocean.
  • Article
    Impact of current-wave interaction on storm surge simulation : a case study for Hurricane Bob
    (John Wiley & Sons, 2013-05-30) Sun, Yunfang ; Chen, Changsheng ; Beardsley, Robert C. ; Xu, Qichun ; Qi, Jianhua ; Lin, Huichan
    Hurricane Bob moved up the U.S. east coast and crossed over southern New England and the Gulf of Maine [with peak marine winds up to 54 m/s (100 mph)] on 19–20 August 1991, causing significant damage along the coast and shelf. A 3-D fully wave-current-coupled finite-volume community ocean model system was developed and applied to simulate and examine the coastal ocean responses to Hurricane Bob. Results from process study-oriented experiments showed that the impact of wave-current interaction on surge elevation varied in space and time, more significant over the shelf than inside the inner bays. While sea level change along the coast was mainly driven by the water flux controlled by barotropic dynamics and the vertically integrated highest water transports were essentially the same for cases with and without water stratification, the hurricane-induced wave-current interaction could generate strong vertical current shear in the stratified areas, leading to a strong offshore transport near the bottom and vertical turbulent mixing over the continental shelf. Stratification could also result in a significant difference of water currents around islands where the water is not vertically well mixed.
  • Article
    Observed wintertime tidal and subtidal currents over the continental shelf in the northern South China Sea
    (John Wiley & Sons, 2014-08-19) Li, Ruixiang ; Chen, Changsheng ; Xia, Huayong ; Beardsley, Robert C. ; Shi, Maochong ; Lai, Zhigang ; Lin, Huichan ; Feng, Yanqing ; Liu, Changjian ; Xu, Qichun ; Ding, Yang ; Zhang, Yu
    Synthesis analyses were performed to examine characteristics of tidal and subtidal currents at eight mooring sites deployed over the northern South China Sea (NSCS) continental shelf in the 2006–2007 and 2009–2010 winters. Rotary spectra and harmonic analysis results showed that observed tidal currents in the NSCS were dominated by baroclinic diurnal tides with phases varying both vertically and horizontally. This feature was supported by the CC-FVCOM results, which demonstrated that the diurnal tidal flow over this shelf was characterized by baroclinic Kelvin waves with vertical phase differences varying in different flow zones. The northeasterly wind-induced southwestward flow prevailed over the NSCS shelf during winter, with episodic appearances of mesoscale eddies and a bottom-intensified buoyancy-driven slope water intrusion. The moored current records captured a warm-core anticyclonic eddy, which originated from the southwestern coast of Taiwan and propagated southwestward along the slope consistent with a combination of β-plane and topographic Rossby waves. The eddy was surface-intensified with a swirl speed of >50 cm/s and a vertical scale of ∼400 m. In absence of eddies and onshore deep slope water intrusion, the observed southwestward flow was highly coherent with the northeasterly wind stress. Observations did not support the existence of the permanent wintertime South China Sea Warm Current (SCSWC). The definition of SCSWC, which was based mainly on thermal wind calculations with assumed level of no motion at the bottom, needs to be interpreted with caution since the observed circulation over the NSCS shelf in winter included both barotropic and baroclinic components.
  • Article
    A new high-resolution unstructured grid finite volume Arctic Ocean model (AO-FVCOM) : an application for tidal studies
    (American Geophysical Union, 2009-08-27) Chen, Changsheng ; Gao, Guoping ; Qi, Jianhua ; Proshutinsky, Andrey ; Beardsley, Robert C. ; Kowalik, Zygmunt ; Lin, Huichan ; Cowles, Geoffrey W.
    A spherical coordinate version of the unstructured grid 3-D FVCOM (finite volume coastal ocean model) has been applied to the Arctic Ocean to simulate tides with a horizontal resolution ranging from 1 km in the near-coastal areas to 15 km in the deep ocean. By accurately resolving the irregular coastlines and bathymetry in the Arctic Ocean coastal regions, this model reproduces the diurnal (K1 and O1) and semidiurnal (M2 and S2) tidal wave dynamics and captures the complex tidal structure along the coast, particularly in the narrow straits of the Canadian Archipelago. The simulated tidal parameters (harmonic constituents of sea surface elevation and currents) agree well with the available observational data. High-resolution meshes over the continental shelf and slope capture the detailed spatial structure of topographic trapped shelf waves, which are quite energetic along the Greenland, Siberia, and Spitsbergen continental slope and shelf break areas. Water stratification influences the vertical distribution of tidal currents but not the water transport and thus tidal elevation. The comparison with previous finite difference models suggests that horizontal resolution and geometric fitting are two prerequisites to simulate realistically the tidal energy flux in the Arctic Ocean, particularly in the Canadian Archipelago.