Carvalho
Filipa
Carvalho
Filipa
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleFIReglider: mapping in situ chlorophyll variable fluorescence with autonomous underwater gliders(Association for the Sciences of Limnology and Oceanography, 2020-07-16) Carvalho, Filipa ; Gorbunov, Maxim Y. ; Oliver, Matthew J. ; Haskins, Christina ; Aragon, David ; Kohut, Josh ; Schofield, Oscar M. E.Nutrient and light availability regulate phytoplankton physiology and photosynthesis in the ocean. These physiological processes are difficult to sample in time and space over physiologically and ecologically relevant scales using traditional shipboard techniques. Gliders are changing the nature of data collection, by allowing a sustained presence at sea over regional scales, collecting data at resolution not possible using traditional techniques. The integration of a fluorescence induction and relaxation (FIRe) sensor in a Slocum glider allows autonomous high‐resolution and vertically‐resolved measurements of photosynthetic physiological variables together with oceanographic data. In situ measurements of variable fluorescence under ambient light allows a better understanding of the physical controls of primary production (PP). We demonstrate this capability in a laboratory setting and with several glider deployments in the Southern Ocean. Development of these approaches will allow for the in situ evaluation of phytoplankton light stress and photoacclimation mechanisms, as well as the role of vertical mixing in phytoplankton dynamics and the underlying physiology, especially in remote locations and for prolonged duration.
-
Working PaperEXPORTS North Atlantic eddy tracking(NASA STI Program and Woods Hole Oceanographic Institution, 2022-10) Erickson, Zachary K. ; Fields, Erik ; Omand, Melissa M. ; Johnson, Leah ; Thompson, Andrew F. ; D'Asaro, Eric A. ; Carvalho, Filipa ; Dove, Lilian A. ; Lee, Craig M. ; Nicholson, David P. ; Shilling, Geoff ; Cetinić, Ivona ; Siegel, David A.The EXPORTS North Atlantic field campaign (EXPORTS-NA) of May 2021 used a diverse array of ship-based and autonomous platforms to measure and quantify processes leading to carbon export in the open ocean. The success of this field program relied heavily on the ability to make measurements following a Lagrangian trajectory within a coherent, retentive eddy (Sections 1, 2). Identifying an eddy that would remain coherent and retentive over the course of a monthlong deployment was a significant challenge that the EXPORTS team faced. This report details the processes and procedures used by the primarily shore-based eddy tracking team to locate, track, and sample with autonomous assets such an eddy before and during EXPORTS-NA.