Bond-Lamberty Benjamin

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 2 of 2
  • Article
    Simulating the impacts of disturbances on forest carbon cycling in North America : processes, data, models, and challenges
    (American Geophysical Union, 2011-11-08) Liu, Shuguang ; Bond-Lamberty, Benjamin ; Hicke, Jeffrey A. ; Vargas, Rodrigo ; Zhao, Shuqing ; Chen, Jing ; Edburg, Steven L. ; Hu, Yueming ; Liu, Jinxun ; McGuire, A. David ; Xiao, Jingfeng ; Keane, Robert ; Yuan, Wenping ; Tang, Jianwu ; Luo, Yiqi ; Potter, Christopher ; Oeding, Jennifer
    Forest disturbances greatly alter the carbon cycle at various spatial and temporal scales. It is critical to understand disturbance regimes and their impacts to better quantify regional and global carbon dynamics. This review of the status and major challenges in representing the impacts of disturbances in modeling the carbon dynamics across North America revealed some major advances and challenges. First, significant advances have been made in representation, scaling, and characterization of disturbances that should be included in regional modeling efforts. Second, there is a need to develop effective and comprehensive process-based procedures and algorithms to quantify the immediate and long-term impacts of disturbances on ecosystem succession, soils, microclimate, and cycles of carbon, water, and nutrients. Third, our capability to simulate the occurrences and severity of disturbances is very limited. Fourth, scaling issues have rarely been addressed in continental scale model applications. It is not fully understood which finer scale processes and properties need to be scaled to coarser spatial and temporal scales. Fifth, there are inadequate databases on disturbances at the continental scale to support the quantification of their effects on the carbon balance in North America. Finally, procedures are needed to quantify the uncertainty of model inputs, model parameters, and model structures, and thus to estimate their impacts on overall model uncertainty. Working together, the scientific community interested in disturbance and its impacts can identify the most uncertain issues surrounding the role of disturbance in the North American carbon budget and develop working hypotheses to reduce the uncertainty.
  • Article
    Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
    (IOPScience, 2016-03-07) Abbott, Benjamin W. ; Jones, Jeremy B. ; Schuur, Edward A. G. ; Chapin, F. Stuart ; Bowden, William B. ; Bret-Harte, M. Syndonia ; Epstein, Howard E. ; Flannigan, Michael ; Harms, Tamara K. ; Hollingsworth, Teresa N. ; Mack, Michelle C. ; McGuire, A. David ; Natali, Susan M. ; Rocha, Adrian V. ; Tank, Suzanne E. ; Turetsky, Merritt R. ; Vonk, Jorien E. ; Wickland, Kimberly ; Aiken, George R. ; Alexander, Heather D. ; Amon, Rainer M. W. ; Benscoter, Brian ; Bergeron, Yves ; Bishop, Kevin ; Blarquez, Olivier ; Bond-Lamberty, Benjamin ; Breen, Amy L. ; Buffam, Ishi ; Cai, Yihua ; Carcaillet, Christopher ; Carey, Sean K. ; Chen, Jing M. ; Chen, Han Y. H. ; Christensen, Torben R. ; Cooper, Lee W. ; Cornelissen, Johannes H. C. ; de Groot, William J. ; DeLuca, Thomas Henry ; Dorrepaal, Ellen ; Fetcher, Ned ; Finlay, Jacques C. ; Forbes, Bruce C. ; French, Nancy H. F. ; Gauthier, Sylvie ; Girardin, Martin ; Goetz, Scott J. ; Goldammer, Johann G. ; Gough, Laura ; Grogan, Paul ; Guo, Laodong ; Higuera, Philip E. ; Hinzman, Larry ; Hu, Feng Sheng ; Hugelius, Gustaf ; JAFAROV, ELCHIN ; Jandt, Randi ; Johnstone, Jill F. ; Karlsson, Jan ; Kasischke, Eric S. ; Kattner, Gerhard ; Kelly, Ryan ; Keuper, Frida ; Kling, George W. ; Kortelainen, Pirkko ; Kouki, Jari ; Kuhry, Peter ; Laudon, Hjalmar ; Laurion, Isabelle ; Macdonald, Robie W. ; Mann, Paul J. ; Martikainen, Pertti ; McClelland, James W. ; Molau, Ulf ; Oberbauer, Steven F. ; Olefeldt, David ; Paré, David ; Parisien, Marc-André ; Payette, Serge ; Peng, Changhui ; Pokrovsky, Oleg ; Rastetter, Edward B. ; Raymond, Peter A. ; Raynolds, Martha K. ; Rein, Guillermo ; Reynolds, James F. ; Robards, Martin ; Rogers, Brendan ; Schädel, Christina ; Schaefer, Kevin ; Schmidt, Inger K. ; Shvidenko, Anatoly ; Sky, Jasper ; Spencer, Robert G. M. ; Starr, Gregory ; Striegl, Robert ; Teisserenc, Roman ; Tranvik, Lars J. ; Virtanen, Tarmo ; Welker, Jeffrey M. ; Zimov, Sergey A.
    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced.