Curry Beth

No Thumbnail Available
Last Name
Curry
First Name
Beth
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Greenland freshwater pathways in the sub-Arctic Seas from model experiments with passive tracers
    (John Wiley & Sons, 2016-01-25) Dukhovskoy, Dmitry S. ; Myers, Paul G. ; Platov, Gennady A. ; Timmermans, Mary-Louise ; Curry, Beth ; Proshutinsky, Andrey ; Bamber, Jonathan L. ; Chassignet, Eric P. ; Hu, Xianmin ; Lee, Craig M. ; Somavilla, Raquel
    Accelerating since the early 1990s, the Greenland Ice Sheet mass loss exerts a significant impact on thermohaline processes in the sub-Arctic seas. Surplus freshwater discharge from Greenland since the 1990s, comparable in volume to the amount of freshwater present during the Great Salinity Anomaly events, could spread and accumulate in the sub-Arctic seas, influencing convective processes there. However, hydrographic observations in the Labrador Sea and the Nordic Seas, where the Greenland freshening signal might be expected to propagate, do not show a persistent freshening in the upper ocean during last two decades. This raises the question of where the surplus Greenland freshwater has propagated. In order to investigate the fate, pathways, and propagation rate of Greenland meltwater in the sub-Arctic seas, several numerical experiments using a passive tracer to track the spreading of Greenland freshwater have been conducted as a part of the Forum for Arctic Ocean Modeling and Observational Synthesis effort. The models show that Greenland freshwater propagates and accumulates in the sub-Arctic seas, although the models disagree on the amount of tracer propagation into the convective regions. Results highlight the differences in simulated physical mechanisms at play in different models and underscore the continued importance of intercomparison studies. It is estimated that surplus Greenland freshwater flux should have caused a salinity decrease by 0.06–0.08 in the sub-Arctic seas in contradiction with the recently observed salinification (by 0.15–0.2) in the region. It is surmised that the increasing salinity of Atlantic Water has obscured the freshening signal.
  • Article
    Studies of the Canadian Arctic Archipelago water transport and its relationship to basin-local forcings : results from AO-FVCOM
    (John Wiley & Sons, 2016-06-25) Zhang, Yu ; Chen, Changsheng ; Beardsley, Robert C. ; Gao, Guoping ; Lai, Zhigang ; Curry, Beth ; Lee, Craig M. ; Lin, Huichan ; Qi, Jianhua ; Xu, Qichun
    A high-resolution (up to 2 km), unstructured-grid, fully coupled Arctic sea ice-ocean Finite-Volume Community Ocean Model (AO-FVCOM) was employed to simulate the flow and transport through the Canadian Arctic Archipelago (CAA) over the period 1978–2013. The model-simulated CAA outflow flux was in reasonable agreement with the flux estimated based on measurements across Davis Strait, Nares Strait, Lancaster Sound, and Jones Sounds. The model was capable of reproducing the observed interannual variability in Davis Strait and Lancaster Sound. The simulated CAA outflow transport was highly correlated with the along-strait and cross-strait sea surface height (SSH) difference. Compared with the wind forcing, the sea level pressure (SLP) played a dominant role in establishing the SSH difference and the correlation of the CAA outflow with the cross-strait SSH difference can be explained by a simple geostrophic balance. The change in the simulated CAA outflow transport through Davis Strait showed a negative correlation with the net flux through Fram Strait. This correlation was related to the variation of the spatial distribution and intensity of the slope current over the Beaufort Sea and Greenland shelves. The different basin-scale surface forcings can increase the model uncertainty in the CAA outflow flux up to 15%. The daily adjustment of the model elevation to the satellite-derived SSH in the North Atlantic region outside Fram Strait could produce a larger North Atlantic inflow through west Svalbard and weaken the outflow from the Arctic Ocean through east Greenland.
  • Article
    OceanGliders: A component of the integrated GOOS
    (Frontiers Media, 2019-10-02) Testor, Pierre ; de Young, Brad ; Rudnick, Daniel L. ; Glenn, Scott ; Hayes, Daniel J. ; Lee, Craig M. ; Pattiaratchi, Charitha ; Hill, Katherine Louise ; Heslop, Emma ; Turpin, Victor ; Alenius, Pekka ; Barrera, Carlos ; Barth, John A. ; Beaird, Nicholas ; Bécu, Guislain ; Bosse, Anthony ; Bourrin, François ; Brearley, J. Alexander ; Chao, Yi ; Chen, Sue ; Chiggiato, Jacopo ; Coppola, Laurent ; Crout, Richard ; Cummings, James A. ; Curry, Beth ; Curry, Ruth G. ; Davis, Richard F. ; Desai, Kruti ; DiMarco, Steven F. ; Edwards, Catherine ; Fielding, Sophie ; Fer, Ilker ; Frajka-Williams, Eleanor ; Gildor, Hezi ; Goni, Gustavo J. ; Gutierrez, Dimitri ; Haugan, Peter M. ; Hebert, David ; Heiderich, Joleen ; Henson, Stephanie A. ; Heywood, Karen J. ; Hogan, Patrick ; Houpert, Loïc ; Huh, Sik ; Inall, Mark E. ; Ishii, Masao ; Ito, Shin-ichi ; Itoh, Sachihiko ; Jan, Sen ; Kaiser, Jan ; Karstensen, Johannes ; Kirkpatrick, Barbara ; Klymak, Jody M. ; Kohut, Josh ; Krahmann, Gerd ; Krug, Marjolaine ; McClatchie, Sam ; Marin, Frédéric ; Mauri, Elena ; Mehra, Avichal ; Meredith, Michael P. ; Meunier, Thomas ; Miles, Travis ; Morell, Julio M. ; Mortier, Laurent ; Nicholson, Sarah ; O'Callaghan, Joanne ; O'Conchubhair, Diarmuid ; Oke, Peter ; Pallás-Sanz, Enric ; Palmer, Matthew D. ; Park, Jong Jin ; Perivoliotis, Leonidas ; Poulain, Pierre Marie ; Perry, Ruth ; Queste, Bastien ; Rainville, Luc ; Rehm, Eric ; Roughan, Moninya ; Rome, Nicholas ; Ross, Tetjana ; Ruiz, Simon ; Saba, Grace ; Schaeffer, Amandine ; Schönau, Martha ; Schroeder, Katrin ; Shimizu, Yugo ; Sloyan, Bernadette M. ; Smeed, David A. ; Snowden, Derrick ; Song, Yumi ; Swart, Sebastiaan ; Tenreiro, Miguel ; Thompson, Andrew ; Tintore, Joaquin ; Todd, Robert E. ; Toro, Cesar ; Venables, Hugh J. ; Wagawa, Taku ; Waterman, Stephanie N. ; Watlington, Roy A. ; Wilson, Doug
    The OceanGliders program started in 2016 to support active coordination and enhancement of global glider activity. OceanGliders contributes to the international efforts of the Global Ocean Observation System (GOOS) for Climate, Ocean Health, and Operational Services. It brings together marine scientists and engineers operating gliders around the world: (1) to observe the long-term physical, biogeochemical, and biological ocean processes and phenomena that are relevant for societal applications; and, (2) to contribute to the GOOS through real-time and delayed mode data dissemination. The OceanGliders program is distributed across national and regional observing systems and significantly contributes to integrated, multi-scale and multi-platform sampling strategies. OceanGliders shares best practices, requirements, and scientific knowledge needed for glider operations, data collection and analysis. It also monitors global glider activity and supports the dissemination of glider data through regional and global databases, in real-time and delayed modes, facilitating data access to the wider community. OceanGliders currently supports national, regional and global initiatives to maintain and expand the capabilities and application of gliders to meet key global challenges such as improved measurement of ocean boundary currents, water transformation and storm forecast.